
peewee Documentation
Release 2.0.0

charles leifer

April 29, 2014

Contents

i

ii

peewee Documentation, Release 2.0.0

• a small orm

• written in python

• provides a lightweight querying interface over sql

• uses sql concepts when querying, like joins and where clauses

• support for some extensions, like hstore

For flask integration, including an admin interface and RESTful API, check out flask-peewee.

See notes on notes on upgrading and changes from 1.0

Contents 1

https://github.com/coleifer/flask-peewee/

peewee Documentation, Release 2.0.0

2 Contents

CHAPTER 1

Contents:

1.1 Overview

peewee is a lightweight ORM written in python.

Examples:

a simple query selecting a user
User.get(User.username == ’charles’)

get the staff and super users
editors = User.select().where(

(User.is_staff == True) |
(User.is_superuser == True)

)

get tweets by editors ("<<" maps to IN)
Tweet.select().where(Tweet.user << editors)

how many active users are there?
User.select().where(User.active == True).count()

paginate the user table and show me page 3 (users 41-60)
User.select().order_by(User.username).paginate(3, 20)

order users by number of tweets
User.select().annotate(Tweet).order_by(

fn.Count(Tweet.id).desc()
)

a similar way of expressing the same
User.select(

User, fn.Count(Tweet.id).alias(’ct’)
).join(Tweet).group_by(User).order_by(R(’ct desc’))

do an atomic update
Counter.update(count=Counter.count + 1).where(

Counter.url == request.url
)

Check out the docs for notes on the methods of querying.

3

http://en.wikipedia.org/wiki/Object-relational_mapping

peewee Documentation, Release 2.0.0

1.1.1 Why?

peewee began when I was working on a small app in flask and found myself writing lots of queries and wanting a very
simple abstraction on top of the sql. I had so much fun working on it that I kept adding features. My goal has always
been, though, to keep the implementation incredibly simple. I’ve made a couple dives into django’s orm but have never
come away with a deep understanding of its implementation. peewee is small enough that its my hope anyone with an
interest in orms will be able to understand the code without too much trouble.

1.2 Installing peewee

pip install peewee

1.2.1 Installing with git

You can pip install the git clone:

pip install -e git+https://github.com/coleifer/peewee.git

If you don’t want to use pip:

git clone https://github.com/coleifer/peewee.git
cd peewee
python setup.py install

You can test your installation by running the test suite.

python setup.py test

Feel free to check out the Example app which ships with the project.

1.3 Upgrading peewee

Peewee went from 2319 SLOC to 1666.

1.3.1 Goals for the new API

• consistent: there is one way of doing things

• expressive: things can be done that I never thought of

1.3.2 Changes from version 1.0

The biggest changes between 1.0 and 2.0 are in the syntax used for constructing queries. The first iteration of peewee I
threw up on github was about 600 lines. I was passing around strings and dictionaries and as time went on and I added
features, those strings turned into tuples and objects. This meant, though, that I needed code to handle all the possible
ways of expressing something. Look at the code for parse_select.

I learned a valuable lesson: keep data in datastructures until the absolute last second.

With the benefit of hindsight and experience, I decided to rewrite and unify the API a bit. The result is a tradeoff. The
newer syntax may be a bit more verbose at times, but at least it will be consistent.

4 Chapter 1. Contents:

https://gist.github.com/a957dbbff0310fd88d5c

peewee Documentation, Release 2.0.0

Since seeing is believing, I will show some side-by-side comparisons. Let’s pretend we’re using the models from the
cookbook, good ol’ user and tweet:

class User(Model):
username = CharField()

class Tweet(Model):
user = ForeignKeyField(User, related_name=’tweets’)
message = TextField()
created_date = DateTimeField(default=datetime.datetime.now)
is_published = BooleanField(default=True)

Get me a list of all tweets by a user named “charlie”:

1.0
Tweet.select().join(User).where(username=’charlie’)

2.0
Tweet.select().join(User).where(User.username == ’charlie’)

Get me a list of tweets ordered by the authors username, then newest to oldest:

1.0 -- this is one where there are like 10 ways to express it
Tweet.select().join(User).order_by(’username’, (Tweet, ’created_date’, ’desc’))

2.0
Tweet.select().join(User).order_by(User.username, Tweet.created_date.desc())

Get me a list of tweets created by users named “charlie” or “peewee herman”, and which were created in the last week.

last_week = datetime.datetime.now() - datetime.timedelta(days=7)

1.0
Tweet.select().where(created_date__gt=last_week).join(User).where(

Q(username=’charlie’) | Q(username=’peewee herman’)
)

2.0
Tweet.select().join(User).where((Tweet.created_date > last_week) & (

(User.username == ’charlie’) | (User.username == ’peewee herman’)
))

Get me a list of users and when they last tweeted (if ever):

1.0
User.select({

User: [’*’],
Tweet: [Max(’created_date’, ’last_date’)]

}).join(Tweet, ’LEFT OUTER’).group_by(User)

2.0
User.select(

User, fn.Max(Tweet.created_date).alias(’last_date’)
).join(Tweet, JOIN_LEFT_OUTER).group_by(User)

Let’s do an atomic update on a counter model (you’ll have to use your imagination):

1.0
Counter.update(count=F(’count’) + 1).where(url=request.url)

1.3. Upgrading peewee 5

peewee Documentation, Release 2.0.0

2.0
Counter.update(count=Counter.count + 1).where(Counter.url == request.url)

Let’s find all the users whose username starts with ‘a’ or ‘A’:

1.0
User.select().where(R(’LOWER(SUBSTR(username, 1, 1)) = %s’, ’a’))

2.0
User.select().where(fn.Lower(fn.Substr(User.username, 1, 1)) == ’a’)

I hope a couple things jump out at you from these examples. What I see is that the 1.0 API is sometimes a bit less
verbose, but it relies on strings in many places (which may be fields, aliases, selections, join types, functions, etc). In
the where clause stuff gets crazy as there are args being combined with bitwise operators (“Q” expressions) and also
kwargs being used with django-style “double-underscore” lookups. The crazy thing is, there are so many different
ways I could have expressed some of the above queries using peewee 1.0 that I had a hard time deciding which to even
write.

The 2.0 API is hopefully more consistent. Selections, groupings, functions, joins and orderings all pretty much
conform to the same API. Likewise, where and having clauses are handled the same way (in 1.0 the having clause
is simply a raw string). The new fn object actually is a wrapper – whatever appears to the right of the dot (i.e.
fn.*Lower*) – is treated as a function that can take any arbitrary parameters.

If you’re feeling froggy and want to get coding, you might want to check out:

• the cookbook, which contains many practical examples

• the example app documentation, which shows how to build a simple twitter-like site

• using “fn”

• the querying docs, which contain an in-depth overview of the query apis

1.3.3 Changes in fields and columns

Well, for one, columns are gone. They were a shim that I used to hack in non-integer primary keys. I always thought
the field SQL generation was one of the grosser parts of the module and even worse was the back-and-forth that
happened between the field and column classes. So, columns are gone - its just fields - and they’re hopefully a bit
smaller and saner. I also cleaned up the primary key business. Basically it works like this:

• if you don’t specify a primary key, one will be created named “id”

• if you do specify a primary key and it is a PrimaryKeyField (or subclass), it will be an automatically incrementing
integer

• if you specify a primary key and it is anything else peewee assumes you are in control and will stay out of the
way.

The API for specifying a non-auto-incrementing primary key changed:

1.0
class OldSchool(Model):

uuid = PrimaryKeyField(column_class=VarCharColumn)

2.0
class NewSchool(Model):

uuid = CharField(primary_key=True)

The kwargs for the Field constructor changed slightly, the biggest probably being that db_index was renamed to
index.

6 Chapter 1. Contents:

peewee Documentation, Release 2.0.0

1.3.4 Changes in database and adapter

In peewee 1.0 there were two classes that controlled access to the database – the Database subclass and an Adapter.
The adapter’s job was to say what features a database backend provided, what operations were valid, what column
types were supported, and how to open a connection. The database was a bit higher-level and its main job was to
execute queries and provide metadata about the database, like lists of tables, last insert id, etc.

I chose to consolidate these two classes, since inevitably they always went in pairs (e.g. SqliteDatabase/SqliteAdapter).
The database class now encapsulates all this functionality.

1.3.5 How the SQL gets made

The first thing I started with is the QueryCompiler and the data structures it uses. You can see it start to take shape in
my first commit. It takes the data structures from peewee and spits out SQL. It works recursively and knows about a
few types of expressions:

• the query tree

• comparison statements like ‘==’, ‘IN’, ‘LIKE’ which comprise the leaves of the tree

• expressions like addition, substraction, bitwise operations

• sql functions like substr and lower

• aggregate functions like count and max

• columns, which may be selected, joined on, grouped by, ordered by, used as parameters for functions and
aggregates, etc.

• python objects to use as query parameters

At the heart of it is the Expr object, which is for “expression”. It can be anything that can validly be translated into
part of a SQL query.

Expressions can be nested, giving way to interesting possibilities like the following example I love which selects users
whose username starts with “a”:

User.select().where(fn.Substr(fn.Lower(User.username, 1, 1)) == ’a’)

The “where” clause now contains a tree with one leaf. The leaf represents the nested function expression on the left-
hand-side and the scalar value ‘a’ on the right hand side. Peewee will recursively evaluate the expressions on either
side of the operation and generate the correct SQL.

Another aspect is that Field objects are also expressions, which makes it possible to write things like:

Employee.select().where(Employee.salary < (Employee.tenure * 1000) + 40000)

Note: I totally went crazy with operator overloading.

If you’re interested in looking, the QueryCompiler.parse_expr method is where the bulk of the code lives.

1.4 Peewee Cookbook

Below are outlined some of the ways to perform typical database-related tasks with peewee.

Examples will use the following models:

1.4. Peewee Cookbook 7

https://github.com/coleifer/peewee/blob/3cc1799b707e41183e2afb237b9e61c6e760d3a7/p2.py

peewee Documentation, Release 2.0.0

from peewee import *

class User(Model):
username = CharField()

class Tweet(Model):
user = ForeignKeyField(User, related_name=’tweets’)
message = TextField()
created_date = DateTimeField(default=datetime.datetime.now)
is_published = BooleanField(default=True)

1.4.1 Database and Connection Recipes

Creating a database connection and tables

While it is not necessary to explicitly connect to the database before using it, managing connections explicitly is a
good practice. This way if the connection fails, the exception can be caught during the “connect” step, rather than
some arbitrary time later when a query is executed.

>>> database = SqliteDatabase(’stats.db’)
>>> database.connect()

To use this database with your models, specify it in an inner “Meta” class:

class MyModel(Model):
some_field = CharField()

class Meta:
database = database

It is possible to use multiple databases (provided that you don’t try and mix models from each):

>>> custom_db = SqliteDatabase(’custom.db’)

>>> class CustomModel(Model):
... whatev = CharField()
...
... class Meta:
... database = custom_db
...

>>> custom_db.connect()
>>> CustomModel.create_table()

Best practice: define a base model class that points at the database object you wish to use, and then all your models
will extend it:

custom_db = SqliteDatabase(’custom.db’)

class CustomModel(Model):
class Meta:

database = custom_db

class User(CustomModel):
username = CharField()

8 Chapter 1. Contents:

peewee Documentation, Release 2.0.0

class Tweet(CustomModel):
etc, etc

Note: Remember to specify a database in a model class (or its parent class), otherwise peewee will fall back to a
default sqlite database named “peewee.db”.

Using with Postgresql

Point models at an instance of PostgresqlDatabase.

psql_db = PostgresqlDatabase(’my_database’, user=’code’)

class PostgresqlModel(Model):
"""A base model that will use our Postgresql database"""
class Meta:

database = psql_db

class User(PostgresqlModel):
username = CharField()
etc, etc

Using with MySQL

Point models at an instance of MySQLDatabase.

mysql_db = MySQLDatabase(’my_database’, user=’code’)

class MySQLModel(Model):
"""A base model that will use our MySQL database"""
class Meta:

database = mysql_db

class User(MySQLModel):
username = CharField()
etc, etc

when you’re ready to start querying, remember to connect
mysql_db.connect()

Multi-threaded applications

Some database engines may not allow a connection to be shared across threads, notably sqlite. If you would like
peewee to maintain a single connection per-thread, instantiate your database with threadlocals=True (recom-
mended):

concurrent_db = SqliteDatabase(’stats.db’, threadlocals=True)

The above implementation stores connection state in a thread local and will only use that connection for a given thread.
Pysqlite can share a connection across threads, so if you would prefer to reuse a connection in multiple threads:

1.4. Peewee Cookbook 9

peewee Documentation, Release 2.0.0

native_concurrent_db = SqliteDatabase(’stats.db’, check_same_thread=False)

Deferring initialization

Sometimes the database information is not known until run-time, when it might be loaded from a configuration file/etc.
In this case, you can “defer” the initialization of the database by passing in None as the database_name.

deferred_db = SqliteDatabase(None)

class SomeModel(Model):
class Meta:

database = deferred_db

If you try to connect or issue any queries while your database is uninitialized you will get an exception:

>>> deferred_db.connect()
Exception: Error, database not properly initialized before opening connection

To initialize your database, you simply call the init method with the database_name and any additional kwargs:

database_name = raw_input(’What is the name of the db? ’)
deferred_db.init(database_name)

1.4.2 Creating, Reading, Updating and Deleting

Creating a new record

You can use the Model.create() method on the model:

>>> User.create(username=’Charlie’)
<__main__.User object at 0x2529350>

This will INSERT a new row into the database. The primary key will automatically be retrieved and stored on the
model instance.

Alternatively, you can build up a model instance programmatically and then save it:

>>> user = User()
>>> user.username = ’Charlie’
>>> user.save()
>>> user.id
1

See also Model.save(), Model.insert() and InsertQuery

Updating existing records

Once a model instance has a primary key, any attempt to re-save it will result in an UPDATE rather than another
INSERT:

>>> user.save()
>>> user.id
1
>>> user.save()
>>> user.id
1

10 Chapter 1. Contents:

peewee Documentation, Release 2.0.0

If you want to update multiple records, issue an UPDATE query. The following example will update all Entry objects,
marking them as “published”, if their pub_date is less than today’s date.

>>> update_query = Tweet.update(is_published=True).where(Tweet.creation_date < datetime.today())
>>> update_query.execute()
4 # <--- number of rows updated

For more information, see the documentation on UpdateQuery.

Deleting a record

To delete a single model instance, you can use the Model.delete_instance() shortcut:

>>> user = User.get(User.id == 1)
>>> user.delete_instance()
1 # <--- number of rows deleted

>>> User.get(User.id == 1)
UserDoesNotExist: instance matching query does not exist:
SQL: SELECT t1."id", t1."username" FROM "user" AS t1 WHERE t1."id" = ?
PARAMS: [1]

To delete an arbitrary group of records, you can issue a DELETE query. The following will delete all Tweet objects
that are a year old.

>>> delete_query = Tweet.delete().where(Tweet.pub_date < one_year_ago)
>>> delete_query.execute()
7 # <--- number of rows deleted

For more information, see the documentation on DeleteQuery.

Selecting a single record

You can use the Model.get() method to retrieve a single instance matching the given query.

This method is a shortcut that calls Model.select() with the given query, but limits the result set to 1. Addition-
ally, if no model matches the given query, a DoesNotExist exception will be raised.

>>> User.get(User.id == 1)
<__main__.Blog object at 0x25294d0>

>>> User.get(User.id == 1).username
u’Charlie’

>>> User.get(User.username == ’Charlie’)
<__main__.Blog object at 0x2529410>

>>> User.get(User.username == ’nobody’)
UserDoesNotExist: instance matching query does not exist:
SQL: SELECT t1."id", t1."username" FROM "user" AS t1 WHERE t1."username" = ?
PARAMS: [’nobody’]

For more information see notes on SelectQuery and Querying API in general.

Selecting multiple records

To simply get all instances in a table, call the Model.select() method:

1.4. Peewee Cookbook 11

peewee Documentation, Release 2.0.0

>>> for user in User.select():
... print user.username
...
Charlie
Peewee Herman

When you iterate over a SelectQuery, it will automatically execute it and start returning results from the database
cursor. Subsequent iterations of the same query will not hit the database as the results are cached.

Another useful note is that you can retrieve instances related by ForeignKeyField by iterating. To get all the
related instances for an object, you can query the related name. Looking at the example models, we have Users and
Tweets. Tweet has a foreign key to User, meaning that any given user may have 0..n tweets. A user’s related tweets
are exposed using a SelectQuery, and can be iterated the same as any other SelectQuery:

>>> for tweet in user.tweets:
... print tweet.message
...
hello world
this is fun
look at this picture of my food

The tweets attribute is just another select query and any methods available to SelectQuery are available:

>>> for tweet in user.tweets.order_by(Tweet.created_date.desc()):
... print tweet.message
...
look at this picture of my food
this is fun
hello world

Filtering records

You can filter for particular records using normal python operators.

>>> user = User.get(User.username == ’Charlie’)
>>> for tweet in Tweet.select().where(Tweet.user == user, Tweet.is_published == True):
... print ’%s: %s (%s)’ % (tweet.user.username, tweet.message)
...
Charlie: hello world
Charlie: this is fun

>>> for tweet in Tweet.select().where(Tweet.created_date < datetime.datetime(2011, 1, 1)):
... print tweet.message, tweet.created_date
...
Really old tweet 2010-01-01 00:00:00

You can also filter across joins:

>>> for tweet in Tweet.select().join(User).where(User.username == ’Charlie’):
... print tweet.message
hello world
this is fun
look at this picture of my food

If you want to express a complex query, use parentheses and python’s “or” and “and” operators:

>>> Tweet.select().join(User).where(
... (User.username == ’Charlie’) |

12 Chapter 1. Contents:

peewee Documentation, Release 2.0.0

... (User.username == ’Peewee Herman’)

...)

Check out the table of query operations to see what types of queries are possible.

Note: A lot of fun things can go in the where clause of a query, such as:

• a field expression, e.g. User.username == ’Charlie’

• a function expression, e.g. fn.Lower(fn.Substr(User.username, 1, 1)) == ’a’

• a comparison of one column to another, e.g. Employee.salary < (Employee.tenure * 1000) +
40000

You can also nest queries, for example tweets by users whose username starts with “a”:

the "<<" operator signifies an "IN" query
Tweet.select().where(

Tweet.user << User.select().where(fn.Lower(fn.Substr(User.username, 1, 1)) == ’a’)
)

Note: If you are already familiar with Django’s ORM, you can use the “double underscore” syntax using the
SelectQuery.filter() method:

>>> for tweet in Tweet.filter(user__username=’Charlie’):
... print tweet.message
hello world
this is fun
look at this picture of my food

To perform OR lookups, use the special DQ object:

>>> User.filter(DQ(username=’Charlie’) | DQ(username=’Peewee Herman’))

Warning: The Zen of Python says “There should be one– and preferably only one –obvious way to do it.” The
django-style filtering is supported for backwards compatibility with 1.0, so if you can, its probably best not to use
it.

Check the docs for some more example queries.

Sorting records

>>> for t in Tweet.select().order_by(Tweet.created_date):
... print t.pub_date
...
2010-01-01 00:00:00
2011-06-07 14:08:48
2011-06-07 14:12:57

>>> for t in Tweet.select().order_by(Tweet.created_date.desc()):
... print t.pub_date
...
2011-06-07 14:12:57
2011-06-07 14:08:48
2010-01-01 00:00:00

1.4. Peewee Cookbook 13

peewee Documentation, Release 2.0.0

You can also order across joins. Assuming you want to order tweets by the username of the author, then by cre-
ated_date:

>>> qry = Tweet.select().join(User).order_by(User.username, Tweet.created_date.desc())

Paginating records

The paginate method makes it easy to grab a “page” or records – it takes two parameters, page_number, and
items_per_page:

>>> for tweet in Tweet.select().order_by(Tweet.id).paginate(2, 10):
... print tweet.message
...
tweet 10
tweet 11
tweet 12
tweet 13
tweet 14
tweet 15
tweet 16
tweet 17
tweet 18
tweet 19

Counting records

You can count the number of rows in any select query:

>>> Tweet.select().count()
100
>>> Tweet.select().where(Tweet.id > 50).count()
50

Iterating over lots of rows

To limit the amount of memory used by peewee when iterating over a lot of rows (i.e. you may be dumping data to
csv), use the iterator() method on the QueryResultWrapper. This method allows you to iterate without
caching each model returned, using much less memory when iterating over large result sets:

let’s assume we’ve got 1M stat objects to dump to csv
stats_qr = Stat.select().execute()

our imaginary serializer class
serializer = CSVSerializer()

loop over all the stats and serialize
for stat in stats_qr.iterator():

serializer.serialize_object(stat)

For simple queries you can see further speed improvements by using the SelectQuery.naive() query method.
See the documentation for details on this optimization.

stats_query = Stat.select().naive() # note we are calling "naive()"
stats_qr = stats_query.execute()

14 Chapter 1. Contents:

peewee Documentation, Release 2.0.0

for stat in stats_qr.iterator():
serializer.serialize_object(stat)

Performing atomic updates

>>> Stat.update(counter=Stat.counter + 1).where(Stat.url == request.url)

Aggregating records

Suppose you have some users and want to get a list of them along with the count of tweets in each. First I will show
you the shortcut:

query = User.select().annotate(Tweet)

This is equivalent to the following:

query = User.select(
User, fn.Count(Tweet.id).alias(’count’)

).join(Tweet).group_by(User)

The resulting query will return User objects with all their normal attributes plus an additional attribute ‘count’ which
will contain the number of tweets. By default it uses an inner join if the foreign key is not nullable, which means
blogs without entries won’t appear in the list. To remedy this, manually specify the type of join to include users with
0 tweets:

query = User.select().join(Tweet, JOIN_LEFT_OUTER).annotate(Tweet)

You can also specify a custom aggregator:

query = User.select().annotate(Tweet, fn.Max(Tweet.created_date).alias(’latest’))

Let’s assume you have a tagging application and want to find tags that have a certain number of related objects. For
this example we’ll use some different models in a Many-To-Many configuration:

class Photo(Model):
image = CharField()

class Tag(Model):
name = CharField()

class PhotoTag(Model):
photo = ForeignKeyField(Photo)
tag = ForeignKeyField(Tag)

Now say we want to find tags that have at least 5 photos associated with them:

>>> Tag.select().join(PhotoTag).join(Photo).group_by(Tag).having(fn.Count(Photo.id) > 5)

Yields the following:

SELECT t1."id", t1."name"
FROM "tag" AS t1
INNER JOIN "phototag" AS t2 ON t1."id" = t2."tag_id"
INNER JOIN "photo" AS t3 ON t2."photo_id" = t3."id"
GROUP BY t1."id", t1."name"
HAVING Count(t3."id") > 5

1.4. Peewee Cookbook 15

peewee Documentation, Release 2.0.0

Suppose we want to grab the associated count and store it on the tag:

>>> Tag.select(
... Tag, fn.Count(Photo.id).alias(’count’)
...).join(PhotoTag).join(Photo).group_by(Tag).having(fn.Count(Photo.id) > 5)

SQL Functions, Subqueries and “Raw expressions”

Suppose you need to want to get a list of all users whose username begins with “a”. There are a couple ways to do
this, but one method might be to use some SQL functions like LOWER and SUBSTR. To use arbitrary SQL functions,
use the special fn() function to construct queries:

select the users’ id, username and the first letter of their username, lower-cased
query = User.select(User, fn.Lower(fn.Substr(User.username, 1, 1)).alias(’first_letter’))

alternatively we could select only users whose username begins with ’a’
a_users = User.select().where(fn.Lower(fn.Substr(User.username, 1, 1)) == ’a’)

>>> for user in a_users:
... print user.username

There are times when you may want to simply pass in some arbitrary sql. You can do this using the special R class.
One use-case is when referencing an alias:

we’ll query the user table and annotate it with a count of tweets for
the given user
query = User.select(User, fn.Count(Tweet.id).alias(’ct’)).join(Tweet).group_by(User)

now we will order by the count, which was aliased to "ct"
query = query.order_by(R(’ct’))

1.4.3 Working with transactions

Context manager

You can execute queries within a transaction using the transaction context manager, which will issue a commit
if all goes well, or a rollback if an exception is raised:

db = SqliteDatabase(’:memory:’)

with db.transaction():
user.delete_instance(recursive=True) # delete user and associated tweets

Decorator

Similar to the context manager, you can decorate functions with the commit_on_success decorator:

db = SqliteDatabase(’:memory:’)

@db.commit_on_success
def delete_user(user):

user.delete_instance(recursive=True)

16 Chapter 1. Contents:

peewee Documentation, Release 2.0.0

Changing autocommit behavior

By default, databases are initialized with autocommit=True, you can turn this on and off at runtime if you like.
The behavior below is roughly the same as the context manager and decorator:

db.set_autocommit(False)
try:

user.delete_instance(recursive=True)
except:

db.rollback()
raise

else:
db.commit()

finally:
db.set_autocommit(True)

If you would like to manually control every transaction, simply turn autocommit off when instantiating your database:

db = SqliteDatabase(’:memory:’, autocommit=False)

User.create(username=’somebody’)
db.commit()

1.4.4 Non-integer Primary Keys and other Tricks

Non-integer primary keys

If you would like use a non-integer primary key (which I generally don’t recommend), you can override the default
column_class of the PrimaryKeyField:

from peewee import *

class UUIDModel(Model):
id = CharField(primary_key=True)

inst = UUIDModel(id=str(uuid.uuid4()))
inst.save() # <-- WRONG!! this will try to do an update

inst.save(force_insert=True) # <-- CORRECT

to update the instance after it has been saved once
inst.save()

Note: Any foreign keys to a model with a non-integer primary key will have the ForeignKeyField use the same
underlying storage type as the primary key they are related to.

See full documentation on non-integer primary keys.

Bulk loading data or manually specifying primary keys

Sometimes you do not want the database to automatically generate a primary key, for instance when bulk loading
relational data. To handle this on a “one-off” basis, you can simply tell peewee to turn off auto_increment during
the import:

1.4. Peewee Cookbook 17

peewee Documentation, Release 2.0.0

data = load_user_csv() # load up a bunch of data

User._meta.auto_increment = False # turn off auto incrementing IDs
with db.transaction():

for row in data:
u = User(id=row[0], username=row[1])
u.save(force_insert=True) # <-- force peewee to insert row

User._meta.auto_increment = True

If you always want to have control over the primary key, simply do not use the PrimaryKeyField type:

class User(BaseModel):
id = IntegerField(primary_key=True)
username = CharField()

>>> u = User.create(id=999, username=’somebody’)
>>> u.id
999
>>> User.get(User.username == ’somebody’).id
999

1.4.5 Introspecting databases

If you’d like to generate some models for an existing database, you can try out the database introspection tool “pwiz”
that comes with peewee.

Usage:

python pwiz.py my_postgresql_database

It works with postgresql, mysql and sqlite:

python pwiz.py test.db --engine=sqlite

pwiz will generate code for:

• database connection object

• a base model class to use this connection

• models that were introspected from the database tables

The generated code is written to stdout.

1.4.6 Schema migrations

Currently peewee does not have support for automatic schema migrations.

18 Chapter 1. Contents:

peewee Documentation, Release 2.0.0

1.5 Example app

peewee ships with an example web app that runs on the Flask microframework. If you already have flask and its
dependencies installed you should be good to go, otherwise install from the included requirements file.

cd example/
pip install -r requirements.txt

1.5.1 Running the example

After ensuring that flask, jinja2, werkzeug and sqlite3 are all installed, switch to the example directory and execute the
run_example.py script:

python run_example.py

1.5.2 Diving into the code

Models

In the spirit of the ur-python framework, django, peewee uses declarative model definitions. If you’re not familiar with
django, the idea is that you declare a class with some members which map directly to the database schema. For the
twitter clone, there are just three models:

User: represents a user account and stores the username and password, an email address for generating avatars using
gravatar, and a datetime field indicating when that account was created

Relationship: this is a “utility model” that contains two foreign-keys to the User model and represents “follow-
ing”.

Message: analagous to a tweet. this model stores the text content of the message, when it was created, and who
posted it (foreign key to User).

If you like UML, this is basically what it looks like:

1.5. Example app 19

http://flask.pocoo.org/

peewee Documentation, Release 2.0.0

Here is what the code looks like:

create a peewee database instance -- our models will use this database to
persist information
database = SqliteDatabase(DATABASE)

model definitions -- the standard "pattern" is to define a base model class
that specifies which database to use. then, any subclasses will automatically
use the correct storage. for more information, see:
http://charlesleifer.com/docs/peewee/peewee/models.html#model-api-smells-like-django
class BaseModel(Model):

class Meta:
database = database

the user model specifies its fields (or columns) declaratively, like django
class User(BaseModel):

username = CharField()
password = CharField()
email = CharField()
join_date = DateTimeField()

class Meta:
order_by = (’username’,)

it often makes sense to put convenience methods on model instances, for
example, "give me all the users this user is following":
def following(self):

query other users through the "relationship" table
return User.select().join(

Relationship, on=Relationship.to_user,
).where(Relationship.from_user == self)

def followers(self):
return User.select().join(

Relationship, on=Relationship.from_user,
).where(Relationship.to_user == self)

def is_following(self, user):
return Relationship.select().where(

(Relationship.from_user == self) &
(Relationship.to_user == user)

).count() > 0

def gravatar_url(self, size=80):
return ’http://www.gravatar.com/avatar/%s?d=identicon&s=%d’ % \

(md5(self.email.strip().lower().encode(’utf-8’)).hexdigest(), size)

this model contains two foreign keys to user -- it essentially allows us to

20 Chapter 1. Contents:

peewee Documentation, Release 2.0.0

model a "many-to-many" relationship between users. by querying and joining
on different columns we can expose who a user is "related to" and who is
"related to" a given user
class Relationship(BaseModel):

from_user = ForeignKeyField(User, related_name=’relationships’)
to_user = ForeignKeyField(User, related_name=’related_to’)

a dead simple one-to-many relationship: one user has 0..n messages, exposed by
the foreign key. because we didn’t specify, a users messages will be accessible
as a special attribute, User.message_set
class Message(BaseModel):

user = ForeignKeyField(User)
content = TextField()
pub_date = DateTimeField()

class Meta:
order_by = (’-pub_date’,)

peewee supports a handful of field types which map to different column types in sqlite. Conversion between python
and the database is handled transparently, including the proper handling of None/NULL.

Note: You might have noticed that we created a BaseModel which sets the database, and then all the other models
extend the BaseModel. This is a good way to make sure all your models are talking to the right database.

Creating the initial tables

In order to start using the models, its necessary to create the tables. This is a one-time operation and can be done
quickly using the interactive interpreter.

Open a python shell in the directory alongside the example app and execute the following:

>>> from app import *
>>> create_tables()

The create_tables() method is defined in the app module and looks like this:

def create_tables():
User.create_table()
Relationship.create_table()
Message.create_table()

Every model has a create_table() classmethod which runs a CREATE TABLE statement in the database. Usu-
ally this is something you’ll only do once, whenever a new model is added.

Note: Adding fields after the table has been created will required you to either drop the table and re-create it or
manually add the columns using ALTER TABLE.

Note: If you want, you can use instead write User.create_table(True) and it will fail silently if the table
already exists.

1.5. Example app 21

peewee Documentation, Release 2.0.0

Connecting to the database

You may have noticed in the above model code that there is a class defined on the base model named Meta that sets
the database attribute. peewee allows every model to specify which database it uses, defaulting to “peewee.db”.
Since you probably want a bit more control, you can instantiate your own database and point your models at it. This
is a peewee idiom:

config
DATABASE = ’tweepee.db’

... more config here, omitted

database = SqliteDatabase(DATABASE) # tell our models to use "tweepee.db"

Because sqlite likes to have a separate connection per-thread, we will tell flask that during the request/response cycle
we need to create a connection to the database. Flask provides some handy decorators to make this a snap:

@app.before_request
def before_request():

g.db = database
g.db.connect()

@app.after_request
def after_request(response):

g.db.close()
return response

Note: We’re storing the db on the magical variable g - that’s a flask-ism and can be ignored as an implementation
detail. The meat of this code is in the idea that we connect to our db every request and close that connection every
response. Django does the exact same thing.

Doing queries

In the User model there are a few instance methods that encapsulate some user-specific functionality, i.e.

• following(): who is this user following?

• followers(): who is following this user?

These methods are rather similar in their implementation but with one key difference:

def following(self):
query other users through the "relationship" table
return User.select().join(

Relationship, on=Relationship.to_user,
).where(Relationship.from_user == self)

def followers(self):
return User.select().join(

Relationship, on=Relationship.from_user,
).where(Relationship.to_user == self)

The queries end up looking like:

following:
SELECT t1."id", t1."username", t1."password", t1."email", t1."join_date"
FROM "user" AS t1
INNER JOIN "relationship" AS t2

22 Chapter 1. Contents:

http://code.djangoproject.com/browser/django/tags/releases/1.2.3/django/db/__init__.py#L80

peewee Documentation, Release 2.0.0

ON t1."id" = t2."to_user_id" # <-- joining on to_user_id
WHERE t2."from_user_id" = ?
ORDER BY t1."username" ASC

followers
SELECT t1."id", t1."username", t1."password", t1."email", t1."join_date"
FROM user AS t1
INNER JOIN relationship AS t2

ON t1."id" = t2."from_user_id" # <-- joining on from_user_id
WHERE t2."to_user_id" = ?
ORDER BY t1."username" ASC

Creating new objects

So what happens when a new user wants to join the site? Looking at the business end of the join() view, we can
that it does a quick check to see if the username is taken, and if not executes a create().

Much like the create() method, all models come with a built-in method called get_or_create() which is
used when one user follows another:

Relationship.get_or_create(
from_user=session[’user’], # <-- the logged-in user
to_user=user, # <-- the user they want to follow

)

Doing subqueries

If you are logged-in and visit the twitter homepage, you will see tweets from the users that you follow. In order to
implement this, it is necessary to do a subquery:

python code
messages = Message.select().where(

Message.user << user.following()
)

Results in the following SQL query:

SELECT t1."id", t1."user_id", t1."content", t1."pub_date"
FROM "message" AS t1
WHERE t1."user_id" IN (

SELECT t2."id"
FROM "user" AS t2
INNER JOIN "relationship" AS t3

ON t2."id" = t3."to_user_id"
WHERE t3."from_user_id" = ?
ORDER BY t1."username" ASC

)

peewee supports doing subqueries on any ForeignKeyField or PrimaryKeyField.

What else is of interest here?

There are a couple other neat things going on in the example app that are worth mentioning briefly.

• Support for paginating lists of results is implemented in a simple function called object_list (after it’s
corollary in Django). This function is used by all the views that return lists of objects.

1.5. Example app 23

peewee Documentation, Release 2.0.0

def object_list(template_name, qr, var_name=’object_list’, **kwargs):
kwargs.update(

page=int(request.args.get(’page’, 1)),
pages=qr.count() / 20 + 1

)
kwargs[var_name] = qr.paginate(kwargs[’page’])
return render_template(template_name, **kwargs)

• Simple authentication system with a login_required decorator. The first function simply adds user data
into the current session when a user successfully logs in. The decorator login_required can be used to
wrap view functions, checking for whether the session is authenticated and if not redirecting to the login page.

def auth_user(user):
session[’logged_in’] = True
session[’user’] = user
session[’username’] = user.username
flash(’You are logged in as %s’ % (user.username))

def login_required(f):
@wraps(f)
def inner(*args, **kwargs):

if not session.get(’logged_in’):
return redirect(url_for(’login’))

return f(*args, **kwargs)
return inner

• Return a 404 response instead of throwing exceptions when an object is not found in the database.

def get_object_or_404(model, **kwargs):
try:

return model.get(**kwargs)
except model.DoesNotExist:

abort(404)

Note: Like these snippets and interested in more? Check out flask-peewee - a flask plugin that provides a django-like
Admin interface, RESTful API, Authentication and more for your peewee models.

1.6 Model API (smells like django)

Models and their fields map directly to database tables and columns. Consider the following:

from peewee import *

db = SqliteDatabase(’test.db’)

create a base model class that our application’s models will extend
class BaseModel(Model):

class Meta:
database = db

class User(BaseModel):
username = CharField()

class Tweet(BaseModel):
user = ForeignKeyField(User, related_name=’tweets’)
message = TextField()

24 Chapter 1. Contents:

https://github.com/coleifer/flask-peewee

peewee Documentation, Release 2.0.0

created_date = DateTimeField(default=datetime.datetime.now)
is_published = BooleanField(default=True)

This is a typical example of how to specify models with peewee. There are several things going on:

1. Create an instance of a Database

db = SqliteDatabase(’test.db’)

This establishes an object, db, which is used by the models to connect to and query the
database. There can be multiple database instances per application, but, as I hope is obvious,
ForeignKeyField related models must be on the same database.

2. Create a base model class which specifies our database

class BaseModel(Model):
class Meta:

database = db

Model configuration is kept namespaced in a special class called Meta – this convention is borrowed
from Django, which does the same thing. Meta configuration is passed on to subclasses, so this code
basically allows all our project’s models to connect to our database.

3. Declare a model or two

class User(BaseModel):
username = CharField()

Model definition is pretty similar to django or sqlalchemy – you basically define a class which rep-
resents a single table in the database, then its attributes (which are subclasses of Field) represent
columns.

Models provide methods for creating/reading/updating/deleting rows in the database.

1.6.1 Creating tables

In order to start using these models, its necessary to open a connection to the database and create the tables first:

connect to our database
db.connect()

create the tables
User.create_table()
Tweet.create_table()

Note: Strictly speaking, the explicit call to connect() is not necessary, but it is good practice to be explicit about
when you are opening and closing connections.

1.6.2 Model instances

Assuming you’ve created the tables and connected to the database, you are now free to create models and execute
queries.

Creating models in the interactive interpreter is a snap.

1. Use the Model.create() classmethod:

1.6. Model API (smells like django) 25

peewee Documentation, Release 2.0.0

>>> user = User.create(username=’charlie’)
>>> tweet = Tweet.create(
... message=’http://www.youtube.com/watch?v=xdhLQCYQ-nQ’,
... user=user
...)

>>> tweet.user.username
’charlie’

2. Build up the instance programmatically:

>>> user = User()
>>> user.username = ’charlie’
>>> user.save()

Traversing foriegn keys

As you can see from above, the foreign key from Tweet to User can be traversed automatically:

>>> tweet.user.username
’charlie’

The reverse is also true, we can iterate a User objects associated Tweets:

>>> for tweet in user.tweets:
... print tweet.message
...
http://www.youtube.com/watch?v=xdhLQCYQ-nQ

Under the hood, the tweets attribute is just a SelectQuery with the where clause prepopulated to point at the
right User instance:

>>> user.tweets
<peewee.SelectQuery object at 0x151f510>

1.6.3 Model options

In order not to pollute the model namespace, model-specific configuration is placed in a special class called Meta,
which is a convention borrowed from the django framework:

from peewee import *

custom_db = SqliteDatabase(’custom.db’)

class CustomModel(Model):
class Meta:

database = custom_db

This instructs peewee that whenever a query is executed on CustomModel to use the custom database.

Note: Take a look at the sample models - you will notice that we created a BaseModel that defined the database,
and then extended. This is the preferred way to define a database and create models.

There are several options you can specify as Meta attributes:

• database: specifies a Database instance to use with this model

26 Chapter 1. Contents:

peewee Documentation, Release 2.0.0

• db_table: the name of the database table this model maps to

• indexes: a list of fields to index

• order_by: a sequence of columns to use as the default ordering for this model

Specifying indexes:

class Transaction(Model):
from_acct = CharField()
to_acct = CharField()
amount = DecimalField()
date = DateTimeField()

class Meta:
indexes = (

create a unique on from/to/date
((’from_acct’, ’to_acct’, ’date’), True),

create a non-unique on from/to
((’from_acct’, ’to_acct’), False),

)

Example of ordering:

class Tweet(Model):
message = TextField()
created = DateTimeField()

class Meta:
order by created date descending
ordering = (’-created’,)

Note: These options are “inheritable”, which means that you can define a database adapter on one model, then
subclass that model and the child models will use that database.

my_db = PostgresqlDatabase(’my_db’)

class BaseModel(Model):
class Meta:

database = my_db

class SomeModel(BaseModel):
field1 = CharField()

class Meta:
ordering = (’field1’,)
no need to define database again since it will be inherited from
the BaseModel

1.6.4 Model methods

class Model

save([force_insert=False])
Save the given instance, creating or updating depending on whether it has a primary key. If
force_insert=True an INSERT will be issued regardless of whether or not the primary key exists.

1.6. Model API (smells like django) 27

peewee Documentation, Release 2.0.0

example:

>>> some_obj.title = ’new title’ # <-- does not touch the database
>>> some_obj.save() # <-- change is persisted to the db

classmethod create(**attributes)

Parameters attributes – key/value pairs of model attributes

Create an instance of the Model with the given attributes set.

example:

>>> user = User.create(username=’admin’, password=’test’)

delete_instance([recursive=False[, delete_nullable=False]])
Parameters

• recursive – Delete this instance and anything that depends on it, optionally updating those
that have nullable dependencies

• delete_nullable – If doing a recursive delete, delete all dependent objects regardless of
whether it could be updated to NULL

Delete the given instance. Any foreign keys set to cascade on delete will be deleted automatically. For
more programmatic control, you can call with recursive=True, which will delete any non-nullable related
models (those that are nullable will be set to NULL). If you wish to delete all dependencies regardless of
whether they are nullable, set delete_nullable=True.

example:

>>> some_obj.delete_instance() # <-- it is gone forever

classmethod get(*args, **kwargs)

Parameters

• args – a list of query expressions, e.g. Usre.username == ’foo’

• kwargs – a mapping of column + lookup to value, e.g. “age__gt=55”

Return type Model instance or raises DoesNotExist exception

Get a single row from the database that matches the given query. Raises a
<model-class>.DoesNotExist if no rows are returned:

>>> user = User.get(User.username == username, User.password == password)

This method is also expose via the SelectQuery, though it takes no parameters:

>>> active = User.select().where(User.active == True)
>>> try:
... users = active.where(User.username == username, User.password == password)
... user = users.get()
... except User.DoesNotExist:
... user = None

Note: the “kwargs” style syntax is provided for compatibility with version 1.0. The expression-style
syntax is preferable.

classmethod get_or_create(**attributes)

Parameters attributes – key/value pairs of model attributes

28 Chapter 1. Contents:

peewee Documentation, Release 2.0.0

Return type a Model instance

Get the instance with the given attributes set. If the instance does not exist it will be created.

example:

>>> CachedObj.get_or_create(key=key, val=some_val)

classmethod select(*selection)

Parameters selection – a list of model classes, field instances, functions or expressions

Return type a SelectQuery for the given Model

example:

>>> User.select().where(User.active == True).order_by(User.username)
>>> Tweet.select(Tweet, User).join(User).order_by(Tweet.created_date.desc())

classmethod update(**query)

Return type an UpdateQuery for the given Model

example:

>>> q = User.update(active=False).where(User.registration_expired == True)
>>> q.execute() # <-- execute it

classmethod delete()

Return type a DeleteQuery for the given Model

example:

>>> q = User.delete().where(User.active == False)
>>> q.execute() # <-- execute it

Warning: Assume you have a model instance – calling model_instance.delete() does not
delete it.

classmethod insert(**query)

Return type an InsertQuery for the given Model

example:

>>> q = User.insert(username=’admin’, active=True, registration_expired=False)
>>> q.execute()
1

classmethod raw(sql, *params)

Return type a RawQuery for the given Model

example:

>>> q = User.raw(’select id, username from users’)
>>> for user in q:
... print user.id, user.username

classmethod filter(*args, **kwargs)

Parameters

• args – a list of DQ or Node objects

1.6. Model API (smells like django) 29

peewee Documentation, Release 2.0.0

• kwargs – a mapping of column + lookup to value, e.g. “age__gt=55”

Return type SelectQuery with appropriate WHERE clauses

Provides a django-like syntax for building a query. The key difference between filter() and
SelectQuery.where() is that filter() supports traversing joins using django’s “double-
underscore” syntax:

>>> sq = Entry.filter(blog__title=’Some Blog’)

This method is chainable:

>>> base_q = User.filter(active=True)
>>> some_user = base_q.filter(username=’charlie’)

Note: this method is provided for compatibility with peewee 1.0

classmethod create_table([fail_silently=False])
Parameters fail_silently – If set to True, the method will check for the existence of the table

before attempting to create.

Create the table for the given model.

example:

>>> database.connect()
>>> SomeModel.create_table() # <-- creates the table for SomeModel

classmethod drop_table([fail_silently=False])
Parameters fail_silently – If set to True, the query will check for the existence of the table

before attempting to remove.

Drop the table for the given model.

Note: Cascading deletes are not handled by this method, nor is the removal of any constraints.

classmethod table_exists()

Return type Boolean whether the table for this model exists in the database

1.7 Fields

The Field class is used to describe the mapping of Model attributes to database columns. Each field type has a
corresponding SQL storage class (i.e. varchar, int), and conversion between python data types and underlying storage
is handled transparently.

When creating a Model class, fields are defined as class-level attributes. This should look familiar to users of the
django framework. Here’s an example:

from peewee import *

class User(Model):
username = CharField()
join_date = DateTimeField()
about_me = TextField()

30 Chapter 1. Contents:

peewee Documentation, Release 2.0.0

There is one special type of field, ForeignKeyField, which allows you to expose foreign-key relationships be-
tween models in an intuitive way:

class Message(Model):
user = ForeignKeyField(User, related_name=’messages’)
body = TextField()
send_date = DateTimeField()

This allows you to write code like the following:

>>> print some_message.user.username
Some User

>>> for message in some_user.messages:
... print message.body
some message
another message
yet another message

1.7.1 Field types table

Parameters accepted by all field types and their default values:

• null = False – boolean indicating whether null values are allowed to be stored

• index = False – boolean indicating whether to create an index on this column

• unique = False – boolean indicating whether to create a unique index on this column

• verbose_name = None – string representing the “user-friendly” name of this field

• help_text = None – string representing any helpful text for this field

• db_column = None – string representing the underlying column to use if different, useful for legacy
databases

• default = None – any value to use as a default for uninitialized models

• choices = None – an optional iterable containing 2-tuples of value, display

• primary_key = False – whether this field is the primary key for the table

• sequence = None – sequence to populate field (if backend supports it)

Field Type Sqlite Postgresql MySQL
CharField varchar varchar varchar
TextField text text longtext
DateTimeField datetime timestamp datetime
IntegerField integer integer integer
BooleanField smallint boolean bool
FloatField real real real
DoubleField real double precision double precision
BigIntegerField integer bigint bigint
DecimalField decimal numeric numeric
PrimaryKeyField integer serial integer
ForeignKeyField integer integer integer
DateField date date date
TimeField time time time

1.7. Fields 31

peewee Documentation, Release 2.0.0

Some fields take special parameters...

Field type Special Parameters
CharField max_length
DateTimeField formats
DateField formats
TimeField formats
DecimalField max_digits, decimal_places, auto_round, rounding
ForeignKeyField rel_model, related_name, cascade, extra

A note on validation

Both default and choices could be implemented at the database level as DEFAULT and CHECK CONSTRAINT
respectively, but any application change would require a schema change. Because of this, default is implemented
purely in python and choices are not validated but exist for metadata purposes only.

1.7.2 Self-referential Foreign Keys

Since the class is not available at the time the field is declared, when creating a self-referential foreign key pass in
‘self’ as the “to” relation:

class Category(Model):
name = CharField()
parent = ForeignKeyField(’self’, related_name=’children’, null=True)

1.7.3 Implementing Many to Many

Peewee does not provide a “field” for many to many relationships the way that django does – this is because the
“field” really is hiding an intermediary table. To implement many-to-many with peewee, you will therefore create the
intermediary table yourself and query through it:

class Student(Model):
name = CharField()

class Course(Model):
name = CharField()

class StudentCourse(Model):
student = ForeignKeyField(Student)
course = ForeignKeyField(Course)

To query, let’s say we want to find students who are enrolled in math class:

for student in Student.select().join(StudentCourse).join(Course).where(Course.name == ’math’):
print student.name

To query what classes a given student is enrolled in:

for course in Course.select().join(StudentCourse).join(Student).where(Student.name == ’da vinci’):
print course.name

To efficiently iterate over a many-to-many relation, i.e., list all students and their respective courses, we will query the
“through” model StudentCourse and “precompute” the Student and Course:

32 Chapter 1. Contents:

peewee Documentation, Release 2.0.0

query = StudentCourse.select(
StudentCourse, Student, Course)

).join(Course).switch(StudentCourse).join(Student)

To print a list of students and their courses you might do the following:

last = None
for student_course in query:

student = student_course.student
if student != last:

last = student
print ’Student: %s’ % student.name

print ’ - %s’ % student_course.course.name

Since we selected all fields from Student and Course in the select clause of the query, these foreign key
traversals are “free” and we’ve done the whole iteration with just 1 query.

1.7.4 Non-integer Primary Keys

First of all, let me say that I do not think using non-integer primary keys is a good idea. The cost in storage is higher,
the index lookups will be slower, and foreign key joins will be more expensive. That being said, here is how you can
use non-integer pks in peewee.

from peewee import Model, PrimaryKeyField, VarCharColumn

class UUIDModel(Model):
explicitly declare a primary key field, and specify the class to use
id = CharField(primary_key=True)

Auto-increment IDs are, as their name says, automatically generated for you when you insert a new row into the
database. The way peewee determines whether to do an INSERT versus an UPDATE comes down to checking whether
the primary key value is None. If None, it will do an insert, otherwise it does an update on the existing value. Since,
with our uuid example, the database driver won’t generate a new ID, we need to specify it manually. When we call
save() for the first time, pass in force_insert = True:

inst = UUIDModel(id=str(uuid.uuid4()))
inst.save() # <-- WRONG!! this will try to do an update

inst.save(force_insert=True) # <-- CORRECT

to update the instance after it has been saved once
inst.save()

Note: Any foreign keys to a model with a non-integer primary key will have the ForeignKeyField use the same
underlying storage type as the primary key they are related to.

1.7.5 Field class API

class Field
The base class from which all other field types extend.

db_field = ’<some field type>’
Attribute used to map this field to a column type, e.g. “string” or “datetime”

1.7. Fields 33

peewee Documentation, Release 2.0.0

template = ’%(column_type)s’
A template for generating the SQL for this field

__init__(null=False, index=False, unique=False, verbose_name=None, help_text=None,
db_column=None, default=None, choices=None, *args, **kwargs)

Parameters

• null – this column can accept None or NULL values

• index – create an index for this column when creating the table

• unique – create a unique index for this column when creating the table

• verbose_name – specify a “verbose name” for this field, useful for metadata purposes

• help_text – specify some instruction text for the usage/meaning of this field

• db_column – column class to use for underlying storage

• default – a value to use as an uninitialized default

• choices – an iterable of 2-tuples mapping value to display

• primary_key (boolean) – whether to use this as the primary key for the table

• sequence – name of sequence (if backend supports it)

db_value(value)

Parameters value – python data type to prep for storage in the database

Return type converted python datatype

python_value(value)

Parameters value – data coming from the backend storage

Return type python data type

coerce(value)
This method is a shorthand that is used, by default, by both db_value and python_value. You can
usually get away with just implementing this.

Parameters value – arbitrary data from app or backend

Return type python data type

field_attributes()
This method is responsible for return a dictionary containing the default field attributes for the column,
e.g. {’max_length’: 255}

Return type a python dictionary

class_prepared()
Simple hook for Field classes to indicate when the Model class the field exists on has been created.

class CharField
Stores: small strings (0-255 bytes)

class TextField
Stores: arbitrarily large strings

class DateTimeField
Stores: python datetime.datetime instances

Accepts a special parameter formats, which contains a list of formats the datetime can be encoded with. The
default behavior is:

34 Chapter 1. Contents:

peewee Documentation, Release 2.0.0

’%Y-%m-%d %H:%M:%S.%f’ # year-month-day hour-minute-second.microsecond
’%Y-%m-%d %H:%M:%S’ # year-month-day hour-minute-second
’%Y-%m-%d’ # year-month-day

Note: If the incoming value does not match a format, it will be returned as-is

class DateField
Stores: python datetime.date instances

Accepts a special parameter formats, which contains a list of formats the date can be encoded with. The
default behavior is:

’%Y-%m-%d’ # year-month-day
’%Y-%m-%d %H:%M:%S’ # year-month-day hour-minute-second
’%Y-%m-%d %H:%M:%S.%f’ # year-month-day hour-minute-second.microsecond

Note: If the incoming value does not match a format, it will be returned as-is

class TimeField
Stores: python datetime.time instances

Accepts a special parameter formats, which contains a list of formats the time can be encoded with. The
default behavior is:

’%H:%M:%S.%f’ # hour:minute:second.microsecond
’%H:%M:%S’ # hour:minute:second
’%H:%M’ # hour:minute
’%Y-%m-%d %H:%M:%S.%f’ # year-month-day hour-minute-second.microsecond
’%Y-%m-%d %H:%M:%S’ # year-month-day hour-minute-second

Note: If the incoming value does not match a format, it will be returned as-is

class IntegerField
Stores: integers

class BooleanField
Stores: True / False

class FloatField
Stores: floating-point numbers

class DecimalField
Stores: decimal numbers

class PrimaryKeyField
Stores: auto-incrementing integer fields suitable for use as primary key.

class ForeignKeyField
Stores: relationship to another model

__init__(to[, related_name=None[, ...]])
Parameters

• rel_model – related Model class or the string ‘self’ if declaring a self-referential foreign
key

• related_name – attribute to expose on related model

1.7. Fields 35

peewee Documentation, Release 2.0.0

class User(Model):
name = CharField()

class Tweet(Model):
user = ForeignKeyField(User, related_name=’tweets’)
content = TextField()

"user" attribute
>>> some_tweet.user
<User: charlie>

"tweets" related name attribute
>>> for tweet in charlie.tweets:
... print tweet.content
Some tweet
Another tweet
Yet another tweet

1.8 Querying API

1.8.1 Constructing queries

Queries in peewee are constructed one piece at a time.

The “pieces” of a peewee query are generally representative of clauses you might find in a SQL query. Most methods
are chainable, so you build your query up one clause at a time. This way, rather complex queries are possible.

Here is a barebones select query:

>>> user_q = User.select() # <-- query is not executed
>>> user_q
<peewee.SelectQuery object at 0x7f6b0810c610>

>>> [u.username for u in user_q] # <-- query is evaluated here
[u’admin’, u’staff’, u’editor’]

We can build up the query by adding some clauses to it:

>>> user_q = user_q.where(User.username << [’admin’, ’editor’])
>>> user_q = user_q.order_by(User.username.desc())
>>> [u.username for u in user_q] # <-- query is re-evaluated here
[u’editor’, u’admin’]

Looking at some simple queries

Get active users:

User.select().where(User.active==True)

Get users who are either staff or superusers:

User.select().where((User.is_staff==True) | (User.is_superuser==True))

Get tweets by user named “charlie”:

36 Chapter 1. Contents:

peewee Documentation, Release 2.0.0

Tweet.select().join(User).where(User.username==’charlie’)

Get tweets by staff or superusers (assumes FK relationship):

Tweet.select().join(User).where(
(User.is_staff==True) | (User.is_superuser==True)

)

1.8.2 Where clause

All queries except InsertQuery support the where() method. If you are familiar with Django’s ORM, it is
analagous to the filter() method.

>>> User.select().where(User.is_staff == True)

Note: User.select() is equivalent to SelectQuery(User).

Joining

You can join on tables related to one another by ForeignKeyField. The join() method acts on the Model that
is the current “query context”. This is either:

• the model the query class was initialized with

• the model most recently JOINed on

There are three types of joins by default:

• JOIN_INNER (default)

• JOIN_LEFT_OUTER

• JOIN_FULL

Here is an example using JOINs:

>>> User.select().join(Blog).where(User.is_staff == True, Blog.status == LIVE)

The above query grabs all staff users who have a blog that is “LIVE”. This next does the inverse: grabs all the blogs
that are live whose author is a staffer:

>>> Blog.select().join(User).where(User.is_staff == True, Blog.status == LIVE)

Another way to write the above query would be to use a subquery:

>>> staff = User.select().where(User.is_staff == true)
>>> Blog.select().where(Blog.status == LIVE, Blog.user << staff)

The above bears a little bit of explanation. First off the SQL generated will not perform any explicit JOIN - it will
rather use a subquery in the WHERE clause:

-- translates roughly to --
SELECT t1.* FROM blog AS t1
WHERE (

t1.status = ? AND
t1.user_id IN (

SELECT t2.id FROM user AS t2 WHERE t2.is_staff = ?

1.8. Querying API 37

peewee Documentation, Release 2.0.0

)
)

And here it is using joins:

-- and here it would be if using joins --
SELECT t1.* FROM blog AS t1
INNER JOIN user AS t2

ON t1.user_id = t2.id
WHERE

t1.status = ? AND
t2.is_staff = ?

Column lookups

The other bit that’s unique about the query is that it specifies "user__in". Users familiar with Django will recognize
this syntax - lookups other than “=” are signified by a double-underscore followed by the lookup type. The following
lookup types are available in peewee:

Lookup Meaning
== x equals y
< x is less than y
<= x is less than or equal to y
> x is greater than y
>= x is greater than or equal to y
!= x is not equal to y
<< x IN y, where y is a list or query
>> x IS y, where y is None/NULL
% x LIKE y where y may contain wildcards
** x ILIKE y where y may contain wildcards

1.8.3 Performing advanced queries

As you may have noticed, all the examples up to now have shown queries that combine multiple clauses with “AND”.
To create arbitrarily complex queries, simply use python’s bitwise “and” and “or” operators:

>>> sq = User.select().where(
... (User.is_staff == True) |
... (User.is_superuser == True)
...)

The WHERE clause will look something like:

WHERE (is_staff = ? OR is_superuser = ?)

In order to negate an expression, use the bitwise “invert” operator:

>>> staff_users = User.select().where(is_staff=True)
>>> Tweet.select().where(
... ~(Tweet.user << staff_users)
...)

This query generates roughly the following SQL:

38 Chapter 1. Contents:

peewee Documentation, Release 2.0.0

SELECT t1.* FROM blog AS t1
WHERE

NOT t1.user_id IN (
SELECT t2.id FROM user AS t2 WHERE t2.is_staff = ?

)

Rather complex lookups are possible:

>>> sq = User.select().where(
... ((User.is_staff == True) | (User.is_superuser == True)) &
... (User.join_date >= datetime(2009, 1, 1)
...)

This generates roughly the following SQL:

SELECT * FROM user
WHERE (

(is_staff = ? OR is_superuser = ?) AND
(join_date >= ?)

)

Note: If you need more power, check out RawQuery

Comparing against column data

Suppose you have a model that looks like the following:

class WorkerProfiles(Model):
salary = IntegerField()
desired = IntegerField()
tenure = IntegerField()

What if we want to query WorkerProfiles to find all the rows where “salary” is greater than “desired” (maybe
you want to find out who may be looking for a raise)?

WorkerProfile.select().where(
WorkerProfile.salary < WorkerProfile.desired

)

We can also create expressions, like to find employees who might not be getting paid enough based on their tenure:

WorkerProfile.select().where(
WorkerProfile.salary < (WorkerProfile.tenure * 1000) + 40000

)

Atomic updates

The techniques shown above also work for updating data. Suppose you are counting pageviews in a special table:

PageView.update(count=PageView.count + 1).where(
PageView.url == request.url

)

1.8. Querying API 39

peewee Documentation, Release 2.0.0

The “fn” helper

class fn
A helper class that will convert arbitrary function calls to SQL function calls.

SQL provides a number of helper functions as a part of the language. These functions can be used to calculate counts
and sums over rows, perform string manipulations, do complex math, and more. There are a lot of functions.

To express functions in peewee, use the fn object. The way it works is anything to the right of the “dot” operator will
be treated as a function. You can pass that function arbitrary parameters which can be other valid expressions.

For example:

Peewee expression Equivalent SQL
fn.Count(Tweet.id).alias(’count’) Count(t1."id") AS count
fn.Lower(fn.Substr(User.username, 1, 1)) Lower(Substr(t1."username", 1, 1))
fn.Rand().alias(’random’) Rand() AS random
fn.Stddev(Employee.salary).alias(’sdv’) Stddev(t1."salary") AS sdv

Functions can be used as any part of a query:

• select

• where

• group_by

• order_by

• having

• update query

• insert query

Aggregating records

Suppose you have some users and want to get a list of them along with the count of tweets each has made. First I will
show you the shortcut:

query = User.select().annotate(Tweet)

This is equivalent to the following:

query = User.select(
User, fn.Count(Tweet.id).alias(’count’)

).join(Tweet).group_by(User)

The resulting query will return User objects with all their normal attributes plus an additional attribute ‘count’ which
will contain the number of tweets. By default it uses an inner join if the foreign key is not nullable, which means
users without tweets won’t appear in the list. To remedy this, manually specify the type of join to include users with 0
tweets:

query = User.select().join(Tweet, JOIN_LEFT_OUTER).annotate(Tweet)

You can also specify a custom aggregator. In the following query we will annotate the users with the date of their most
recent tweet:

query = User.select().annotate(Tweet, fn.Max(Tweet.created_date).alias(’latest’))

Conversely, sometimes you want to perform an aggregate query that returns a scalar value, like the “max id”. Queries
like this can be executed by using the aggregate() method:

40 Chapter 1. Contents:

peewee Documentation, Release 2.0.0

most_recent_tweet = Tweet.select().aggregate(fn.Max(Tweet.created_date))

SQL Functions

Arbitrary SQL functions can be expressed using the fn function.

Selecting users and counts of tweets:

>>> users = User.select(User, fn.Count(Tweet.id).alias(’count’)).join(Tweet).group_by(User)
>>> for user in users:
... print user.username, ’posted’, user.count, ’tweets’

This functionality can also be used as part of the WHERE or HAVING clauses:

>>> a_users = User.select().where(fn.Lower(fn.Substr(User.username, 1, 1)) == ’a’)
>>> for user in a_users:
... print user.username

alpha
Alton

Saving Queries by Selecting Related Models

Returning to my favorite models, User and Tweet, between which there is a ForeignKeyField, a common
pattern might be to display a list of the latest 10 tweets with some info about the user that posted them. We can do this
pretty easily:

for tweet in Tweet.select().order_by(Tweet.created_date.desc()).limit(10):
print ’%s, posted on %s’ % (tweet.message, tweet.user.username)

Looking at the query log, though, this will cause 11 queries:

• 1 query for the tweets

• 1 query for every related user (10 total)

This can be optimized into one query very easily, though:

tweets = Tweet.select(Tweet, User).join(User)
for tweet in tweets.order_by(Tweet.created_date.desc()).limit(10):

print ’%s, posted on %s’ % (tweet.message, tweet.user.username)

Will cause only one query that looks something like this:

SELECT t1.id, t1.message, t1.user_id, t1.created_date, t2.id, t2.username
FROM tweet AS t1
INNER JOIN user AS t2

ON t1.user_id = t2.id
ORDER BY t1.created_date desc
LIMIT 10

peewee will handle constructing the objects and you can access them as you would normally.

Note: Note in the above example the call to .join(User)

This works for following objects “up” the chain, i.e. following foreign key relationships. The reverse is not true,
however – you cannot issue a single query and get all related sub-objects, i.e. list users and prefetch all related tweets.

1.8. Querying API 41

peewee Documentation, Release 2.0.0

This can be done by fetching all tweets (with related user data), then reconstructing the users in python, but is not
provided as part of peewee. For a detailed discussion of working around this, see the discussion here.

Speeding up simple select queries

Simple select queries can get a performance boost (especially when iterating over large result sets) by calling
naive(). This method simply patches all attributes directly from the cursor onto the model. For simple queries
this should have no noticeable impact. The main difference is when multiple tables are queried, as in the previous
example:

above example
tweets = Tweet.select(Tweet, User).join(User)
for tweet in tweets.order_by(Tweet.created_date.desc()).limit(10):

print ’%s, posted on %s’ % (tweet.message, tweet.user.username)

And here is how you would do the same if using a naive query:

very similar query to the above -- main difference is we’re
aliasing the blog title to "blog_title"
tweets = Tweet.select(Tweet, User.username).join(User).naive()
for tweet in tweets.order_by(Tweet.created_date.desc()).limit(10):

print ’%s, posted on %s’ % (tweet.message, tweet.username)

1.8.4 Query evaluation

In order to execute a query, it is always necessary to call the execute() method.

To get a better idea of how querying works let’s look at some example queries and their return values:

>>> dq = User.delete().where(User.active == False) # <-- returns a DeleteQuery
>>> dq
<peewee.DeleteQuery object at 0x7fc866ada4d0>
>>> dq.execute() # <-- executes the query and returns number of rows deleted
3

>>> uq = User.update(active=True).where(User.id > 3) # <-- returns an UpdateQuery
>>> uq
<peewee.UpdateQuery object at 0x7fc865beff50>
>>> uq.execute() # <-- executes the query and returns number of rows updated
2

>>> iq = User.insert(username=’new user’) # <-- returns an InsertQuery
>>> iq
<peewee.InsertQuery object at 0x7fc865beff10>
>>> iq.execute() # <-- executes query and returns the new row’s PK
8

>>> sq = User.select().where(User.active == True) # <-- returns a SelectQuery
>>> sq
<peewee.SelectQuery object at 0x7fc865b7a510>
>>> qr = sq.execute() # <-- executes query and returns a QueryResultWrapper
>>> qr
<peewee.QueryResultWrapper object at 0x7fc865b7a6d0>
>>> [u.id for u in qr]
[1, 2, 3, 4, 7, 8]
>>> [u.id for u in qr] # <-- re-iterating over qr does not re-execute query
[1, 2, 3, 4, 7, 8]

42 Chapter 1. Contents:

https://groups.google.com/forum/?fromgroups#!topic/peewee-orm/RLd2r-eKp7w

peewee Documentation, Release 2.0.0

>>> [u.id for u in sq] # <-- as a shortcut, you can iterate directly over
>>> # a SelectQuery (which uses a QueryResultWrapper
>>> # behind-the-scenes)
[1, 2, 3, 4, 7, 8]

Note: Iterating over a SelectQuery will cause it to be evaluated, but iterating over it multiple times will not result
in the query being executed again.

1.8.5 QueryResultWrapper

As I hope the previous bit showed, Delete, Insert and Update queries are all pretty straightforward. Select
queries are a little bit tricky in that they return a special object called a QueryResultWrapper. The sole purpose
of this class is to allow the results of a query to be iterated over efficiently. In general it should not need to be dealt
with explicitly.

The preferred method of iterating over a result set is to iterate directly over the SelectQuery, allowing it to manage
the QueryResultWrapper internally.

1.8.6 SelectQuery

class SelectQuery
By far the most complex of the 4 query classes available in peewee. It supports JOIN operations on other tables,
aggregation via GROUP BY and HAVING clauses, ordering via ORDER BY, and can be iterated and sliced to
return only a subset of results.

__init__(model, *selection)

Parameters

• model – a Model class to perform query on

• selection – a list of models, fields, functions or expressions

If no query is provided, it will default to all the fields of the given model.

>>> sq = SelectQuery(User, User.id, User.username)
>>> sq = SelectQuery(User,
... User, fn.Count(Tweet.id).alias(’count’)
...).join(Tweet).group_by(User)

where(*q_or_node)

Parameters q_or_node – a list of expressions (Q or Node objects

Return type a SelectQuery instance

>>> sq = SelectQuery(User).where(User.username == ’somebody’)
>>> sq = SelectQuery(Blog).where(
... (User.username == ’somebody’) |
... (User.username == ’nobody’)
...)

Note: where() calls are chainable

join(model, join_type=None, on=None)

1.8. Querying API 43

peewee Documentation, Release 2.0.0

Parameters

• model – the model to join on. there must be a ForeignKeyField between the current
query context and the model passed in.

• join_type – allows the type of JOIN used to be specified explicitly, one of JOIN_INNER,
JOIN_LEFT_OUTER, JOIN_FULL

• on – if multiple foreign keys exist between two models, this parameter is the ForeignKey-
Field to join on.

Return type a SelectQuery instance

Generate a JOIN clause from the current query context to the model passed in, and establishes
model as the new query context.

>>> sq = SelectQuery(Tweet).join(User)
>>> sq = SelectQuery(User).join(Relationship, on=Relationship.to_user)

group_by(*clauses)

Parameters clauses – either a list of model classes or field names

Return type SelectQuery

>>> # get a list of blogs with the count of entries each has
>>> sq = User.select(
... User, fn.Count(Tweet.id).alias(’count’)
...).join(Tweet).group_by(User)

having(*q_or_node)

Parameters q_or_node – a list of expressions (Q or Node objects

Return type SelectQuery

>>> sq = User.select(
... User, fn.Count(Tweet.id).alias(’count’)
...).join(Tweet).group_by(User).having(fn.Count(Tweet.id) > 10)

order_by(*clauses)

Parameters clauses – a list of fields or calls to field.[asc|desc]()

Return type SelectQuery

example:

>>> User.select().order_by(User.username)
>>> Tweet.select().order_by(Tweet.created_date.desc())
>>> Tweet.select().join(User).order_by(
... User.username, Tweet.created_date.desc()
...)

paginate(page_num, paginate_by=20)

Parameters

• page_num – a 1-based page number to use for paginating results

• paginate_by – number of results to return per-page

Return type SelectQuery

applies a LIMIT and OFFSET to the query.

44 Chapter 1. Contents:

peewee Documentation, Release 2.0.0

>>> User.select().order_by(User.username).paginate(3, 20) # <-- get users 41-60

limit(num)

Parameters num (int) – limit results to num rows

offset(num)

Parameters num (int) – offset results by num rows

count()

Return type an integer representing the number of rows in the current query

>>> sq = SelectQuery(Tweet)
>>> sq.count()
45 # <-- number of tweets
>>> sq.where(Tweet.status == DELETED)
>>> sq.count()
3 # <-- number of tweets that are marked as deleted

get()

Return type Model instance or raises DoesNotExist exception

Get a single row from the database that matches the given query. Raises a
<model-class>.DoesNotExist if no rows are returned:

>>> active = User.select().where(User.active == True)
>>> try:
... user = active.where(User.username == username).get()
... except User.DoesNotExist:
... user = None

This method is also exposed via the Model api, in which case it accepts arguments that are translated to
the where clause:

>>> user = User.get(User.active == True, User.username == username)

exists()

Return type boolean whether the current query will return any rows. uses an optimized lookup,
so use this rather than get().

>>> sq = User.select().where(User.active == True)
>>> if sq.where(User.username==username, User.password==password).exists():
... authenticated = True

annotate(related_model, aggregation=None)

Parameters

• related_model – related Model on which to perform aggregation, must be linked by
ForeignKeyField.

• aggregation – the type of aggregation to use, e.g.
fn.Count(Tweet.id).alias(’count’)

Return type SelectQuery

Annotate a query with an aggregation performed on a related model, for example, “get a list of users with
the number of tweets for each”:

1.8. Querying API 45

peewee Documentation, Release 2.0.0

>>> User.select().annotate(Tweet)

if aggregation is None, it will default to fn.Count(related_model.id).alias(’count’)
but can be anything:

>>> user_latest = User.select().annotate(Tweet, fn.Max(Tweet.created_date).alias(’latest’))

Note: If the ForeignKeyField is nullable, then a LEFT OUTER join may need to be used:

>>> User.select().join(Tweet, JOIN_LEFT_OUTER).annotate(Tweet)

aggregate(aggregation)

Parameters aggregation – a function specifying what aggregation to perform, for example
fn.Max(Tweet.created_date).

Method to look at an aggregate of rows using a given function and return a scalar value, such as the count
of all rows or the average value of a particular column.

for_update([for_update=True])
Return type SelectQuery

indicates that this query should lock rows for update

distinct()

Return type SelectQuery

indicates that this query should only return distinct rows. results in a SELECT DISTINCT query.

naive()

Return type SelectQuery

indicates that this query should only attempt to reconstruct a single model instance for every row returned
by the cursor. if multiple tables were queried, the columns returned are patched directly onto the single
model instance.

Note: this can provide a significant speed improvement when doing simple iteration over a large result
set.

switch(model)

Parameters model – model to switch the query context to.

Return type a SelectQuery instance

Switches the query context to the given model. Raises an exception if the model has not been selected
or joined on previously. The following example selects from blog and joins on both entry and user:

>>> sq = SelectQuery(Blog).join(Entry).switch(Blog).join(User)

filter(*args, **kwargs)

Parameters

• args – a list of DQ or Node objects

• kwargs – a mapping of column + lookup to value, e.g. “age__gt=55”

Return type SelectQuery with appropriate WHERE clauses

46 Chapter 1. Contents:

peewee Documentation, Release 2.0.0

Provides a django-like syntax for building a query. The key difference between filter() and
SelectQuery.where() is that filter() supports traversing joins using django’s “double-
underscore” syntax:

>>> sq = Entry.filter(blog__title=’Some Blog’)

This method is chainable:

>>> base_q = User.filter(active=True)
>>> some_user = base_q.filter(username=’charlie’)

Note: this method is provided for compatibility with peewee 1.

execute()

Return type QueryResultWrapper

Executes the query and returns a QueryResultWrapper for iterating over the result set. The results
are managed internally by the query and whenever a clause is added that would possibly alter the result
set, the query is marked for re-execution.

__iter__()
Executes the query:

>>> for user in User.select().where(User.active == True):
... print user.username

1.8.7 UpdateQuery

class UpdateQuery
Used for updating rows in the database.

__init__(model, **kwargs)

Parameters

• model – Model class on which to perform update

• kwargs – mapping of field/value pairs containing columns and values to update

>>> uq = UpdateQuery(User, active=False).where(User.registration_expired==True)
>>> uq.execute() # run the query

>>> atomic_update = UpdateQuery(User, message_count=User.message_count + 1).where(User.id == 3)
>>> atomic_update.execute() # run the query

where(*args, **kwargs)
Same as SelectQuery.where()

execute()

Return type Number of rows updated

Performs the query

1.8.8 DeleteQuery

class DeleteQuery
Deletes rows of the given model.

1.8. Querying API 47

peewee Documentation, Release 2.0.0

Note: It will not traverse foreign keys or ensure that constraints are obeyed, so use it with care.

__init__(model)
creates a DeleteQuery instance for the given model:

>>> dq = DeleteQuery(User).where(User.active==False)

where(*args, **kwargs)
Same as SelectQuery.where()

execute()

Return type Number of rows deleted

Performs the query

1.8.9 InsertQuery

class InsertQuery
Creates a new row for the given model.

__init__(model, **kwargs)
creates an InsertQuery instance for the given model where kwargs is a dictionary of field name to
value:

>>> iq = InsertQuery(User, username=’admin’, password=’test’, active=True)
>>> iq.execute() # <--- insert new row

execute()

Return type primary key of the new row

Performs the query

1.8.10 RawQuery

class RawQuery
Allows execution of an arbitrary query and returns instances of the model via a QueryResultsWrapper.

__init__(model, query, *params)
creates a RawQuery instance for the given model which, when executed, will run the given query with
the given parameters and return model instances:

>>> rq = RawQuery(User, ’SELECT * FROM users WHERE username = ?’, ’admin’)
>>> for obj in rq.execute():
... print obj
<User: admin>

execute()

Return type a QueryResultWrapper for iterating over the result set. The results are in-
stances of the given model.

Performs the query

48 Chapter 1. Contents:

peewee Documentation, Release 2.0.0

1.9 Databases

Below the Model level, peewee uses an abstraction for representing the database. The Database is responsible for
establishing and closing connections, making queries, and gathering information from the database. The Database
encapsulates functionality specific to a given db driver. For example difference in column types across database
engines, or support for certain features like sequences. The database is responsible for smoothing out the quirks of
each backend driver to provide a consistent interface.

The Database also uses a subclass of QueryCompiler to generate valid SQL. The QueryCompiler maps the
internal data structures used by peewee to SQL statements.

For a high-level overview of working with transactions, check out the transactions cookbook.

For notes on deferring instantiation of database, for example if loading configuration at run-time, see the notes on
deferring initialization.

Note: The internals of the Database and QueryCompiler will be of interest to anyone interested in adding
support for another database driver.

1.9.1 Writing a database driver

Peewee currently supports Sqlite, MySQL and Postgresql. These databases are very popular and run the gamut from
fast, embeddable databases to heavyweight servers suitable for large-scale deployments. That being said, there are
a ton of cool databases out there and adding support for your database-of-choice should be really easy, provided the
driver supports the DB-API 2.0 spec.

The db-api 2.0 spec should be familiar to you if you’ve used the standard library sqlite3 driver, psycopg2 or the like.
Peewee currently relies on a handful of parts:

• Connection.commit

• Connection.execute

• Connection.rollback

• Cursor.description

• Cursor.fetchone

These methods are generally wrapped up in higher-level abstractions and exposed by the Database, so even if your
driver doesn’t do these exactly you can still get a lot of mileage out of peewee. An example is the apsw sqlite driver in
the “playhouse” module.

Starting out

The first thing is to provide a subclass of Database that will open a connection.

from peewee import Database
import foodb # our fictional driver

class FooDatabase(Database):
def _connect(self, database, **kwargs):

return foodb.connect(database, **kwargs)

1.9. Databases 49

http://www.python.org/dev/peps/pep-0249/
http://code.google.com/p/apsw/

peewee Documentation, Release 2.0.0

Essential methods to override

The Database provides a higher-level API and is responsible for executing queries, creating tables and indexes, and
introspecting the database to get lists of tables. The above implementation is the absolute minimum needed, though
some features will not work – for best results you will want to additionally add a method for extracting a list of tables
and indexes for a table from the database. We’ll pretend that FooDB is a lot like MySQL and has special “SHOW”
statements:

class FooDatabase(Database):
def _connect(self, database, **kwargs):

return foodb.connect(database, **kwargs)

def get_tables(self):
res = self.execute(’SHOW TABLES;’)
return [r[0] for r in res.fetchall()]

def get_indexes_for_table(self, table):
res = self.execute(’SHOW INDEXES IN %s;’ % self.quote_name(table))
rows = sorted([(r[2], r[1] == 0) for r in res.fetchall()])
return rows

Other things the database handles that are not covered here include:

• last insert id and number of rows modified

• specifying characters used for string interpolation and quoting identifiers, for instance, sqlite uses ”?” for
interpolation and MySQL uses a backtick for quoting

• mapping operations such as “LIKE/ILIKE” to their database equivalent

Refer to the documentation below or the source code. for details.

Note: If your driver conforms to the db-api 2.0 spec, there shouldn’t be much work needed to get up and running.

Using our new database

Our new database can be used just like any of the other database subclasses:

from peewee import *
from foodb_ext import FooDatabase

db = FooDatabase(’my_database’, user=’foo’, password=’secret’)

class BaseModel(Model):
class Meta:

database = db

class Blog(BaseModel):
title = CharField()
contents = TextField()
pub_date = DateTimeField()

1.9.2 Database and its subclasses

class Database
A high-level api for working with the supported database engines. Database provides a wrapper around some
of the functions performed by the Adapter, in addition providing support for:

50 Chapter 1. Contents:

https://github.com/coleifer/peewee/blob/master/peewee.py

peewee Documentation, Release 2.0.0

•execution of SQL queries

•creating and dropping tables and indexes

compiler_class = QueryCompiler
A class suitable for compiling queries

expr_overrides = {}
A mapping of expression codes to string operators

field_overrides = {}
A mapping of field types to database column types, e.g. {’primary_key’: ’SERIAL’}

for_update = False
Whether the given backend supports selecting rows for update

interpolation = ’%s’
The string used by the driver to interpolate query parameters

op_overrides = {}
A mapping of operation codes to string operations, e.g. {OP_LIKE: ’LIKE BINARY’}

quote_char = ’"’
The string used by the driver to quote names

reserved_tables = []
Table names that are reserved by the backend – if encountered in the application a warning will be issued.

sequences = False
Whether the given backend supports sequences

subquery_delete_same_table = True
Whether the given backend supports deleting rows using a subquery that selects from the same table

__init__(database[, threadlocals=False[, autocommit=True[, **connect_kwargs]]])
Parameters

• database – the name of the database (or filename if using sqlite)

• threadlocals – whether to store connections in a threadlocal

• autocommit – automatically commit every query executed by calling execute()

• connect_kwargs – any arbitrary parameters to pass to the database driver when connecting

Note: if your database name is not known when the class is declared, you can pass None in as the database
name which will mark the database as “deferred” and any attempt to connect while in this state will raise
an exception. To initialize your database, call the Database.init() method with the database name

init(database[, **connect_kwargs])
If the database was instantiated with database=None, the database is said to be in a ‘deferred’ state (see
notes) – if this is the case, you can initialize it at any time by calling the init method.

Parameters

• database – the name of the database (or filename if using sqlite)

• connect_kwargs – any arbitrary parameters to pass to the database driver when connecting

connect()
Establishes a connection to the database

Note: If you initialized with threadlocals=True, then this will store the connection inside a thread-

1.9. Databases 51

peewee Documentation, Release 2.0.0

local, ensuring that connections are not shared across threads.

close()
Closes the connection to the database (if one is open)

Note: If you initialized with threadlocals=True, only a connection local to the calling thread will
be closed.

get_conn()

Return type a connection to the database, creates one if does not exist

get_cursor()

Return type a cursor for executing queries

get_compiler()

Return type an instance of QueryCompiler

set_autocommit(autocommit)

Parameters autocommit – a boolean value indicating whether to turn on/off autocommit for
the current connection

get_autocommit()

Return type a boolean value indicating whether autocommit is on for the current connection

execute(query)

Param a query instance, such as a SelectQuery

Return type the resulting cursor

execute_sql(sql[, params=None[, require_commit=True]])
Parameters

• sql – a string sql query

• params – a list or tuple of parameters to interpolate

Note: You can configure whether queries will automatically commit by using the set_autocommit()
and Database.get_autocommit() methods.

commit()
Call commit() on the active connection, committing the current transaction

rollback()
Call rollback() on the active connection, rolling back the current transaction

commit_on_success(func)
Decorator that wraps the given function in a single transaction, which, upon success will be committed. If
an error is raised inside the function, the transaction will be rolled back and the error will be re-raised.

Parameters func – function to decorate

@database.commit_on_success
def transfer_money(from_acct, to_acct, amt):

from_acct.charge(amt)
to_acct.pay(amt)
return amt

52 Chapter 1. Contents:

peewee Documentation, Release 2.0.0

transaction()
Return a context manager that executes statements in a transaction. If an error is raised inside the context
manager, the transaction will be rolled back, otherwise statements are committed when exiting.

delete a blog instance and all its associated entries, but
do so within a transaction
with database.transaction():

blog.delete_instance(recursive=True)

last_insert_id(cursor, model)

Parameters

• cursor – the database cursor used to perform the insert query

• model – the model class that was just created

Return type the primary key of the most recently inserted instance

rows_affected(cursor)

Return type number of rows affected by the last query

create_table(model_class)

Parameters model_class – Model class to create table for

create_index(model_class, fields[, unique=False])
Parameters

• model_class – Model table on which to create index

• fields – field(s) to create index on (either field instances or field names)

• unique – whether the index should enforce uniqueness

create_foreign_key(model_class, field)

Parameters

• model_class – Model table on which to create foreign key index / constraint

• field – Field object

drop_table(model_class[, fail_silently=False])
Parameters

• model_class – Model table to drop

• fail_silently – if True, query will add a IF EXISTS clause

Note: Cascading drop tables are not supported at this time, so if a constraint exists that prevents a table
being dropped, you will need to handle that in application logic.

create_sequence(sequence_name)

Parameters sequence_name – name of sequence to create

Note: only works with database engines that support sequences

drop_sequence(sequence_name)

Parameters sequence_name – name of sequence to drop

1.9. Databases 53

peewee Documentation, Release 2.0.0

Note: only works with database engines that support sequences

get_indexes_for_table(table)

Parameters table – the name of table to introspect

Return type a list of (index_name, is_unique) tuples

Warning: Not implemented – implementations exist in subclasses

get_tables()

Return type a list of table names in the database

Warning: Not implemented – implementations exist in subclasses

sequence_exists(sequence_name)

Rtype boolean

class SqliteDatabase(Database)
Database subclass that communicates to the “sqlite3” driver

class MySQLDatabase(Database)
Database subclass that communicates to the “MySQLdb” driver

class PostgresqlDatabase(Database)
Database subclass that communicates to the “psycopg2” driver

1.10 Playhouse, a collection of addons

Peewee comes with numerous extras which I didn’t really feel like including in the main source module, but which
might be interesting to implementers or fun to mess around with.

1.10.1 apsw, an advanced sqlite driver

The apsw_ext module contains a database class suitable for use with the apsw sqlite driver. With apsw, it is possible
to use some of the more advanced features of sqlite. It also offers better performance than pysqlite and finer-grained
control over query execution. For more information on the differences between apsw and pysqlite, check the apsw
docs.

Example usage

from apsw_ext import *

db = APSWDatabase(’:memory:’)

class BaseModel(Model):
class Meta:

database = db

class SomeModel(BaseModel):
col1 = CharField()

54 Chapter 1. Contents:

http://code.google.com/p/apsw/
http://apidoc.apsw.googlecode.com/hg/pysqlite.html
http://apidoc.apsw.googlecode.com/hg/pysqlite.html

peewee Documentation, Release 2.0.0

col2 = DateTimeField()
etc, etc

apsw_ext API notes

class APSWDatabase(database, **connect_kwargs)

Parameters

• database (string) – filename of sqlite database

• connect_kwargs – keyword arguments passed to apsw when opening a connection

transaction([lock_type=’deferred’])
Functions just like the Database.transaction() context manager, but accepts an additional param-
eter specifying the type of lock to use.

Parameters lock_type (string) – type of lock to use when opening a new transaction

register_module(mod_name, mod_inst)
Provides a way of globally registering a module. For more information, see the documentation on virtual
tables.

Parameters

• mod_name (string) – name to use for module

• mod_inst (object) – an object implementing the Virtual Table interface

unregister_module(mod_name)
Unregister a module.

Parameters mod_name (string) – name to use for module

1.10.2 Postgresql HStore

The postgresql extensions module provides a number of “postgres-only” functions, currently:

• hstore support

Warning: In order to start using the features described below, you will need to use the extension
PostgresqlExtDatabase class instead of PostgresqlDatabase.

The code below will assume you are using the following database and base model:

from playhouse.postgres_ext import *

ext_db = PostgresqlExtDatabase(’peewee_test’, user=’postgres’)

class BaseExtModel(Model):
class Meta:

database = ext_db

hstore support

Postgresql hstore is an embedded key/value store. With hstore, you can store arbitrary key/value pairs in your database
alongside structured relational data. hstore is great for storing JSON.

1.10. Playhouse, a collection of addons 55

http://apidoc.apsw.googlecode.com/hg/vtable.html
http://apidoc.apsw.googlecode.com/hg/vtable.html
http://apidoc.apsw.googlecode.com/hg/vtable.html?highlight=virtual%20table#apsw.VTTable
http://www.postgresql.org/docs/current/static/hstore.html

peewee Documentation, Release 2.0.0

Currently the postgres_ext module supports the following operations:

• store and retrieve arbitrary dictionaries

• filter by key(s) or partial dictionary

• update/add one or more keys to an existing dictionary

• delete one or more keys from an existing dictionary

• select keys, values, or zip keys and values

• retrieve a slice of keys/values

• test for the existence of a key

• test that a key has a non-NULL value

using hstore

To start with, you will need to import the custom database class and the hstore functions from
playhouse.postgres_ext (see above code snippet). Then, it is as simple as adding a HStoreField to your
model:

class House(BaseExtModel):
address = CharField()
features = HStoreField()

You can now store arbitrary key/value pairs on House instances:

>>> h = House.create(address=’123 Main St’, features={’garage’: ’2 cars’, ’bath’: ’2 bath’})
>>> h_from_db = House.get(House.id == h.id)
>>> h_from_db.features
{’bath’: ’2 bath’, ’garage’: ’2 cars’}

You can filter by keys or partial dictionary:

>>> f = House.features
>>> House.select().where(f.contains(’garage’)) # <-- all houses w/garage key
>>> House.select().where(f.contains([’garage’, ’bath’])) # <-- all houses w/garage & bath
>>> House.select().where(f.contains({’garage’: ’2 cars’})) # <-- houses w/2-car garage

Suppose you want to do an atomic update to the house:

>>> f = House.features
>>> query = House.update(features=f.update({’bath’: ’2.5 bath’, ’sqft’: ’1100’}))
>>> query.where(House.id == h.id).execute()
1
>>> h = House.get(House.id == h.id)
>>> h.features
{’bath’: ’2.5 bath’, ’garage’: ’2 cars’, ’sqft’: ’1100’}

Or, alternatively an atomic delete:

>>> query = House.update(features=f.delete(’bath’))
>>> query.where(House.id == h.id).execute()
1
>>> h = House.get(House.id == h.id)
>>> h.features
{’garage’: ’2 cars’, ’sqft’: ’1100’}

Multiple keys can be deleted at the same time:

56 Chapter 1. Contents:

peewee Documentation, Release 2.0.0

>>> query = House.update(features=f.delete(’garage’, ’sqft’))

You can select just keys, just values, or zip the two:

>>> f = House.features
>>> for h in House.select(House.address, f.keys().alias(’keys’)):
... print h.address, h.keys

123 Main St [u’bath’, u’garage’]

>>> for h in House.select(House.address, f.values().alias(’vals’)):
... print h.address, h.vals

123 Main St [u’2 bath’, u’2 cars’]

>>> for h in House.select(House.address, f.items().alias(’mtx’)):
... print h.address, h.mtx

123 Main St [[u’bath’, u’2 bath’], [u’garage’, u’2 cars’]]

You can retrieve a slice of data, for example, all the garage data:

>>> f = House.features
>>> for h in House.select(House.address, f.slice(’garage’).alias(’garage_data’)):
... print h.address, h.garage_data

123 Main St {’garage’: ’2 cars’}

You can check for the existence of a key and filter rows accordingly:

>>> for h in House.select(House.address, f.exists(’garage’).alias(’has_garage’)):
... print h.address, h.has_garage

123 Main St True

>>> for h in House.select().where(f.exists(’garage’)):
... print h.address, h.features[’garage’] # <-- just houses w/garage data

123 Main St 2 cars

1.10.3 pwiz, a model generator

pwiz is a little script that ships with peewee and is capable of introspecting an existing database and generating model
code suitable for interacting with the underlying data. If you have a database already, pwiz can give you a nice boost
by generating skeleton code with correct column affinities and foreign keys.

If you install peewee using setup.py install, pwiz will be installed as a “script” and you can just run:

pwiz.py -e postgresql -u postgres my_postgres_db > my_models.py

This will print a bunch of models to standard output. So you can do this:

pwiz.py -e postgresql my_postgres_db > mymodels.py
python # <-- fire up an interactive shell

>>> from mymodels import Blog, Entry, Tag, Whatever
>>> print [blog.name for blog in Blog.select()]

1.10. Playhouse, a collection of addons 57

peewee Documentation, Release 2.0.0

Option Meaning Example
-h show help
-e database backend -e mysql
-H host to connect to -H remote.db.server
-p port to connect on -p 9001
-u database user -u postgres
-P database password -P secret
-s postgres schema -s public

The following are valid parameters for the engine:

• sqlite

• mysql

• postgresql

1.10.4 Signal support

Models with hooks for signals (a-la django) are provided in playhouse.signals. To use the signals, you will
need all of your project’s models to be a subclass of playhouse.signals.Model, which overrides the necessary
methods to provide support for the various signals.

from playhouse.signals import Model, connect, post_save

class MyModel(Model):
data = IntegerField()

@connect(post_save, sender=MyModel)
def on_save_handler(model_class, instance, created):

put_data_in_cache(instance.data)

The following signals are provided:

pre_save Called immediately before an object is saved to the database. Provides an additional keyword argument
created, indicating whether the model is being saved for the first time or updated.

post_save Called immediately after an object is saved to the database. Provides an additional keyword argument
created, indicating whether the model is being saved for the first time or updated.

pre_delete Called immediately before an object is deleted from the database when
Model.delete_instance() is used.

post_delete Called immediately after an object is deleted from the database when
Model.delete_instance() is used.

pre_init Called when a model class is first instantiated

post_init Called after a model class has been instantiated and the fields have been populated, for example when
being selected as part of a database query.

Connecting handlers

Whenever a signal is dispatched, it will call any handlers that have been registered. This allows totally separate code
to respond to events like model save and delete.

The Signal class provides a connect() method, which takes a callback function and two optional parameters for
“sender” and “name”. If specified, the “sender” parameter should be a single model class and allows your callback to

58 Chapter 1. Contents:

peewee Documentation, Release 2.0.0

only receive signals from that one model class. The “name” parameter is used as a convenient alias in the event you
wish to unregister your signal handler.

Example usage:

from playhouse.signals import *

def post_save_handler(sender, instance, created):
print ’%s was just saved’ % instance

our handler will only be called when we save instances of SomeModel
post_save.connect(post_save_handler, sender=SomeModel)

All signal handlers accept as their first two arguments sender and instance, where sender is the model class
and instance is the actual model being acted upon.

If you’d like, you can also use a decorator to connect signal handlers. This is functionally equivalent to the above
example:

@connect(post_save, sender=SomeModel)
def post_save_handler(sender, instance, created):

print ’%s was just saved’ % instance

Signal API

class Signal
Stores a list of receivers (callbacks) and calls them when the “send” method is invoked.

connect(receiver[, sender=None[, name=None]])
Add the receiver to the internal list of receivers, which will be called whenever the signal is sent.

Parameters

• receiver (callable) – a callable that takes at least two parameters, a “sender”, which is
the Model subclass that triggered the signal, and an “instance”, which is the actual model
instance.

• sender (Model) – if specified, only instances of this model class will trigger the receiver
callback.

• name (string) – a short alias

from playhouse.signals import post_save
from project.handlers import cache_buster

post_save.connect(cache_buster, name=’project.cache_buster’)

disconnect([receiver=None[, name=None]])
Disconnect the given receiver (or the receiver with the given name alias) so that it no longer is called.
Either the receiver or the name must be provided.

Parameters

• receiver (callable) – the callback to disconnect

• name (string) – a short alias

post_save.disconnect(name=’project.cache_buster’)

1.10. Playhouse, a collection of addons 59

peewee Documentation, Release 2.0.0

send(instance, *args, **kwargs)
Iterates over the receivers and will call them in the order in which they were connected. If the receiver
specified a sender, it will only be called if the instance is an instance of the sender.

Parameters instance – a model instance

connect(signal[, sender=None[, name=None]])
Function decorator that is an alias for a signal’s connect method:

from playhouse.signals import connect, post_save

@connect(post_save, name=’project.cache_buster’)
def cache_bust_handler(sender, instance, *args, **kwargs):

bust the cache for this instance
cache.delete(cache_key_for(instance))

60 Chapter 1. Contents:

CHAPTER 2

Indices and tables

• genindex

• modindex

• search

61

