

 Navigation

 	
 index

 	
 next |

 	peewee 2.0.0 documentation

peewee

	a small orm

	written in python

	provides a lightweight querying interface over sql

	uses sql concepts when querying, like joins and where clauses

	support for some extensions, like hstore

For flask integration, including an admin interface and RESTful API, check
out flask-peewee [https://github.com/coleifer/flask-peewee/].

See notes on notes on upgrading and changes from 1.0

Contents:

	Overview
	Why?

	Installing peewee
	Installing with git

	Upgrading peewee
	Goals for the new API

	Changes from version 1.0

	Changes in fields and columns

	Changes in database and adapter

	How the SQL gets made

	Peewee Cookbook
	Database and Connection Recipes

	Creating, Reading, Updating and Deleting

	Working with transactions

	Non-integer Primary Keys and other Tricks

	Introspecting databases

	Schema migrations

	Example app
	Running the example

	Diving into the code

	Model API (smells like django)
	Creating tables

	Model instances

	Model options

	Model methods

	Fields
	Field types table

	Self-referential Foreign Keys

	Implementing Many to Many

	Non-integer Primary Keys

	Field class API

	Querying API
	Constructing queries

	Where clause

	Performing advanced queries

	Query evaluation

	QueryResultWrapper

	SelectQuery

	UpdateQuery

	DeleteQuery

	InsertQuery

	RawQuery

	Databases
	Writing a database driver

	Database and its subclasses

	Playhouse, a collection of addons
	apsw, an advanced sqlite driver

	Postgresql HStore

	pwiz, a model generator

	Signal support

Indices and tables

	Index

	Module Index

	Search Page

 Copyright charles leifer.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	peewee 2.0.0 documentation

Overview

peewee is a lightweight ORM [http://en.wikipedia.org/wiki/Object-relational_mapping] written
in python.

Examples:

a simple query selecting a user
User.get(User.username == 'charles')

get the staff and super users
editors = User.select().where(
 (User.is_staff == True) |
 (User.is_superuser == True)
)

get tweets by editors ("<<" maps to IN)
Tweet.select().where(Tweet.user << editors)

how many active users are there?
User.select().where(User.active == True).count()

paginate the user table and show me page 3 (users 41-60)
User.select().order_by(User.username).paginate(3, 20)

order users by number of tweets
User.select().annotate(Tweet).order_by(
 fn.Count(Tweet.id).desc()
)

a similar way of expressing the same
User.select(
 User, fn.Count(Tweet.id).alias('ct')
).join(Tweet).group_by(User).order_by(R('ct desc'))

do an atomic update
Counter.update(count=Counter.count + 1).where(
 Counter.url == request.url
)

Check out the docs for notes on the methods of querying.

Why?

peewee began when I was working on a small app in flask and found myself writing
lots of queries and wanting a very simple abstraction on top of the sql. I had
so much fun working on it that I kept adding features. My goal has always been,
though, to keep the implementation incredibly simple. I’ve made a couple dives
into django’s orm but have never come away with a deep understanding of its
implementation. peewee is small enough that its my hope anyone with an interest
in orms will be able to understand the code without too much trouble.

 Copyright charles leifer.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	peewee 2.0.0 documentation

Installing peewee

pip install peewee

Installing with git

You can pip install the git clone:

pip install -e git+https://github.com/coleifer/peewee.git

If you don’t want to use pip:

git clone https://github.com/coleifer/peewee.git
cd peewee
python setup.py install

You can test your installation by running the test suite.

python setup.py test

Feel free to check out the Example app which ships with the project.

 Copyright charles leifer.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	peewee 2.0.0 documentation

Upgrading peewee

Peewee went from 2319 SLOC to 1666.

Goals for the new API

	consistent: there is one way of doing things

	expressive: things can be done that I never thought of

Changes from version 1.0

The biggest changes between 1.0 and 2.0 are in the syntax used for
constructing queries. The first iteration of peewee I threw up on github
was about 600 lines. I was passing around strings and dictionaries and
as time went on and I added features, those strings turned into tuples and
objects. This meant, though, that I needed code to handle all the possible
ways of expressing something. Look at the code for parse_select [https://gist.github.com/a957dbbff0310fd88d5c].

I learned a valuable lesson: keep data in datastructures until the
absolute last second.

With the benefit of hindsight and experience, I decided to rewrite and unify
the API a bit. The result is a tradeoff. The newer syntax may be a bit more
verbose at times, but at least it will be consistent.

Since seeing is believing, I will show some side-by-side comparisons. Let’s
pretend we’re using the models from the cookbook, good ol’ user and tweet:

class User(Model):
 username = CharField()

class Tweet(Model):
 user = ForeignKeyField(User, related_name='tweets')
 message = TextField()
 created_date = DateTimeField(default=datetime.datetime.now)
 is_published = BooleanField(default=True)

Get me a list of all tweets by a user named “charlie”:

1.0
Tweet.select().join(User).where(username='charlie')

2.0
Tweet.select().join(User).where(User.username == 'charlie')

Get me a list of tweets ordered by the authors username, then newest to oldest:

1.0 -- this is one where there are like 10 ways to express it
Tweet.select().join(User).order_by('username', (Tweet, 'created_date', 'desc'))

2.0
Tweet.select().join(User).order_by(User.username, Tweet.created_date.desc())

Get me a list of tweets created by users named “charlie” or “peewee herman”, and
which were created in the last week.

last_week = datetime.datetime.now() - datetime.timedelta(days=7)

1.0
Tweet.select().where(created_date__gt=last_week).join(User).where(
 Q(username='charlie') | Q(username='peewee herman')
)

2.0
Tweet.select().join(User).where((Tweet.created_date > last_week) & (
 (User.username == 'charlie') | (User.username == 'peewee herman')
))

Get me a list of users and when they last tweeted (if ever):

1.0
User.select({
 User: ['*'],
 Tweet: [Max('created_date', 'last_date')]
}).join(Tweet, 'LEFT OUTER').group_by(User)

2.0
User.select(
 User, fn.Max(Tweet.created_date).alias('last_date')
).join(Tweet, JOIN_LEFT_OUTER).group_by(User)

Let’s do an atomic update on a counter model (you’ll have to use your imagination):

1.0
Counter.update(count=F('count') + 1).where(url=request.url)

2.0
Counter.update(count=Counter.count + 1).where(Counter.url == request.url)

Let’s find all the users whose username starts with ‘a’ or ‘A’:

1.0
User.select().where(R('LOWER(SUBSTR(username, 1, 1)) = %s', 'a'))

2.0
User.select().where(fn.Lower(fn.Substr(User.username, 1, 1)) == 'a')

I hope a couple things jump out at you from these examples. What I see is
that the 1.0 API is sometimes a bit less verbose, but it relies on strings in
many places (which may be fields, aliases, selections, join types, functions, etc). In the
where clause stuff gets crazy as there are args being combined with bitwise
operators (“Q” expressions) and also kwargs being used with django-style “double-underscore”
lookups. The crazy thing is, there are so many different ways I could have expressed
some of the above queries using peewee 1.0 that I had a hard time deciding which
to even write.

The 2.0 API is hopefully more consistent. Selections, groupings, functions, joins
and orderings all pretty much conform to the same API. Likewise, where and having
clauses are handled the same way (in 1.0 the having clause is simply a raw string).
The new fn object actually is a wrapper – whatever appears to the right of the
dot (i.e. fn.*Lower*) – is treated as a function that can take any arbitrary
parameters.

If you’re feeling froggy and want to get coding, you might want to check out:

	the cookbook, which contains many practical examples

	the example app documentation, which shows how to build a simple twitter-like site

	using “fn”

	the querying docs, which contain an in-depth overview of the query apis

Changes in fields and columns

Well, for one, columns are gone. They were a shim that I used to hack in non-integer
primary keys. I always thought the field SQL generation was one of the grosser
parts of the module and even worse was the back-and-forth that happened between the
field and column classes. So, columns are gone - its just fields - and they’re
hopefully a bit smaller and saner. I also cleaned up the primary key business.
Basically it works like this:

	if you don’t specify a primary key, one will be created named “id”

	if you do specify a primary key and it is a PrimaryKeyField (or subclass),
it will be an automatically incrementing integer

	if you specify a primary key and it is anything else peewee assumes you are
in control and will stay out of the way.

The API for specifying a non-auto-incrementing primary key changed:

1.0
class OldSchool(Model):
 uuid = PrimaryKeyField(column_class=VarCharColumn)

2.0
class NewSchool(Model):
 uuid = CharField(primary_key=True)

The kwargs for the Field constructor changed slightly, the biggest probably
being that db_index was renamed to index.

Changes in database and adapter

In peewee 1.0 there were two classes that controlled access to the database –
the Database subclass and an Adapter. The adapter’s job was to say what features
a database backend provided, what operations were valid, what column types were
supported, and how to open a connection. The database was a bit higher-level and
its main job was to execute queries and provide metadata about the database, like
lists of tables, last insert id, etc.

I chose to consolidate these two classes, since inevitably they always went in
pairs (e.g. SqliteDatabase/SqliteAdapter). The database class now encapsulates
all this functionality.

How the SQL gets made

The first thing I started with is the QueryCompiler and the data structures it
uses. You can see it start to take shape in my first commit [https://github.com/coleifer/peewee/blob/3cc1799b707e41183e2afb237b9e61c6e760d3a7/p2.py].
It takes the data structures from peewee and spits out SQL. It works recursively and knows
about a few types of expressions:

	the query tree

	comparison statements like ‘==’, ‘IN’, ‘LIKE’ which comprise the leaves of the tree

	expressions like addition, substraction, bitwise operations

	sql functions like substr and lower

	aggregate functions like count and max

	columns, which may be selected, joined on, grouped by, ordered by, used as parameters
for functions and aggregates, etc.

	python objects to use as query parameters

At the heart of it is the Expr object, which is for “expression”. It
can be anything that can validly be translated into part of a SQL query.

Expressions can be nested, giving way to interesting possibilities like
the following example I love which selects users whose username starts with “a”:

User.select().where(fn.Substr(fn.Lower(User.username, 1, 1)) == 'a')

The “where” clause now contains a tree with one leaf. The leaf represents the
nested function expression on the left-hand-side and the scalar value ‘a’ on the
right hand side. Peewee will recursively evaluate the expressions on either side
of the operation and generate the correct SQL.

Another aspect is that Field objects are also expressions, which
makes it possible to write things like:

Employee.select().where(Employee.salary < (Employee.tenure * 1000) + 40000)

Note

I totally went crazy with operator overloading.

If you’re interested in looking, the QueryCompiler.parse_expr method is where
the bulk of the code lives.

 Copyright charles leifer.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	peewee 2.0.0 documentation

Peewee Cookbook

Below are outlined some of the ways to perform typical database-related tasks
with peewee.

Examples will use the following models:

from peewee import *

class User(Model):
 username = CharField()

class Tweet(Model):
 user = ForeignKeyField(User, related_name='tweets')
 message = TextField()
 created_date = DateTimeField(default=datetime.datetime.now)
 is_published = BooleanField(default=True)

Database and Connection Recipes

Creating a database connection and tables

While it is not necessary to explicitly connect to the database before using it,
managing connections explicitly is a good practice. This way if the connection
fails, the exception can be caught during the “connect” step, rather than some
arbitrary time later when a query is executed.

>>> database = SqliteDatabase('stats.db')
>>> database.connect()

To use this database with your models, specify it in an inner “Meta” class:

class MyModel(Model):
 some_field = CharField()

 class Meta:
 database = database

It is possible to use multiple databases (provided that you don’t try and mix
models from each):

>>> custom_db = SqliteDatabase('custom.db')

>>> class CustomModel(Model):
... whatev = CharField()
...
... class Meta:
... database = custom_db
...

>>> custom_db.connect()
>>> CustomModel.create_table()

Best practice: define a base model class that points at the database object
you wish to use, and then all your models will extend it:

custom_db = SqliteDatabase('custom.db')

class CustomModel(Model):
 class Meta:
 database = custom_db

class User(CustomModel):
 username = CharField()

class Tweet(CustomModel):
 # etc, etc

Note

Remember to specify a database in a model class (or its parent class),
otherwise peewee will fall back to a default sqlite database named “peewee.db”.

Using with Postgresql

Point models at an instance of PostgresqlDatabase.

psql_db = PostgresqlDatabase('my_database', user='code')

class PostgresqlModel(Model):
 """A base model that will use our Postgresql database"""
 class Meta:
 database = psql_db

class User(PostgresqlModel):
 username = CharField()
 # etc, etc

Using with MySQL

Point models at an instance of MySQLDatabase.

mysql_db = MySQLDatabase('my_database', user='code')

class MySQLModel(Model):
 """A base model that will use our MySQL database"""
 class Meta:
 database = mysql_db

class User(MySQLModel):
 username = CharField()
 # etc, etc

when you're ready to start querying, remember to connect
mysql_db.connect()

Multi-threaded applications

Some database engines may not allow a connection to be shared across threads, notably
sqlite. If you would like peewee to maintain a single connection per-thread,
instantiate your database with threadlocals=True (recommended):

concurrent_db = SqliteDatabase('stats.db', threadlocals=True)

The above implementation stores connection state in a thread local and will only
use that connection for a given thread. Pysqlite can share a connection across
threads, so if you would prefer to reuse a connection in multiple threads:

native_concurrent_db = SqliteDatabase('stats.db', check_same_thread=False)

Deferring initialization

Sometimes the database information is not known until run-time, when it might
be loaded from a configuration file/etc. In this case, you can “defer” the initialization
of the database by passing in None as the database_name.

deferred_db = SqliteDatabase(None)

class SomeModel(Model):
 class Meta:
 database = deferred_db

If you try to connect or issue any queries while your database is uninitialized
you will get an exception:

>>> deferred_db.connect()
Exception: Error, database not properly initialized before opening connection

To initialize your database, you simply call the init method with the database_name
and any additional kwargs:

database_name = raw_input('What is the name of the db? ')
deferred_db.init(database_name)

Creating, Reading, Updating and Deleting

Creating a new record

You can use the Model.create() method on the model:

>>> User.create(username='Charlie')
<__main__.User object at 0x2529350>

This will INSERT a new row into the database. The primary key will automatically
be retrieved and stored on the model instance.

Alternatively, you can build up a model instance programmatically and then
save it:

>>> user = User()
>>> user.username = 'Charlie'
>>> user.save()
>>> user.id
1

See also Model.save(), Model.insert() and InsertQuery

Updating existing records

Once a model instance has a primary key, any attempt to re-save it will result
in an UPDATE rather than another INSERT:

>>> user.save()
>>> user.id
1
>>> user.save()
>>> user.id
1

If you want to update multiple records, issue an UPDATE query. The following
example will update all Entry objects, marking them as “published”, if their
pub_date is less than today’s date.

>>> update_query = Tweet.update(is_published=True).where(Tweet.creation_date < datetime.today())
>>> update_query.execute()
4 # <--- number of rows updated

For more information, see the documentation on UpdateQuery.

Deleting a record

To delete a single model instance, you can use the Model.delete_instance()
shortcut:

>>> user = User.get(User.id == 1)
>>> user.delete_instance()
1 # <--- number of rows deleted

>>> User.get(User.id == 1)
UserDoesNotExist: instance matching query does not exist:
SQL: SELECT t1."id", t1."username" FROM "user" AS t1 WHERE t1."id" = ?
PARAMS: [1]

To delete an arbitrary group of records, you can issue a DELETE query. The
following will delete all Tweet objects that are a year old.

>>> delete_query = Tweet.delete().where(Tweet.pub_date < one_year_ago)
>>> delete_query.execute()
7 # <--- number of rows deleted

For more information, see the documentation on DeleteQuery.

Selecting a single record

You can use the Model.get() method to retrieve a single instance matching
the given query.

This method is a shortcut that calls Model.select() with the given query,
but limits the result set to 1. Additionally, if no model matches the given query,
a DoesNotExist exception will be raised.

>>> User.get(User.id == 1)
<__main__.Blog object at 0x25294d0>

>>> User.get(User.id == 1).username
u'Charlie'

>>> User.get(User.username == 'Charlie')
<__main__.Blog object at 0x2529410>

>>> User.get(User.username == 'nobody')
UserDoesNotExist: instance matching query does not exist:
SQL: SELECT t1."id", t1."username" FROM "user" AS t1 WHERE t1."username" = ?
PARAMS: ['nobody']

For more information see notes on SelectQuery and Querying API in general.

Selecting multiple records

To simply get all instances in a table, call the Model.select() method:

>>> for user in User.select():
... print user.username
...
Charlie
Peewee Herman

When you iterate over a SelectQuery, it will automatically execute
it and start returning results from the database cursor. Subsequent iterations
of the same query will not hit the database as the results are cached.

Another useful note is that you can retrieve instances related by ForeignKeyField
by iterating. To get all the related instances for an object, you can query the related name.
Looking at the example models, we have Users and Tweets. Tweet has a foreign key to User,
meaning that any given user may have 0..n tweets. A user’s related tweets are exposed
using a SelectQuery, and can be iterated the same as any other SelectQuery:

>>> for tweet in user.tweets:
... print tweet.message
...
hello world
this is fun
look at this picture of my food

The tweets attribute is just another select query and any methods available
to SelectQuery are available:

>>> for tweet in user.tweets.order_by(Tweet.created_date.desc()):
... print tweet.message
...
look at this picture of my food
this is fun
hello world

Filtering records

You can filter for particular records using normal python operators.

>>> user = User.get(User.username == 'Charlie')
>>> for tweet in Tweet.select().where(Tweet.user == user, Tweet.is_published == True):
... print '%s: %s (%s)' % (tweet.user.username, tweet.message)
...
Charlie: hello world
Charlie: this is fun

>>> for tweet in Tweet.select().where(Tweet.created_date < datetime.datetime(2011, 1, 1)):
... print tweet.message, tweet.created_date
...
Really old tweet 2010-01-01 00:00:00

You can also filter across joins:

>>> for tweet in Tweet.select().join(User).where(User.username == 'Charlie'):
... print tweet.message
hello world
this is fun
look at this picture of my food

If you want to express a complex query, use parentheses and python’s “or” and “and”
operators:

>>> Tweet.select().join(User).where(
... (User.username == 'Charlie') |
... (User.username == 'Peewee Herman')
...)

Check out the table of query operations to see what types of
queries are possible.

Note

A lot of fun things can go in the where clause of a query, such as:

	a field expression, e.g. User.username == 'Charlie'

	a function expression, e.g. fn.Lower(fn.Substr(User.username, 1, 1)) == 'a'

	a comparison of one column to another, e.g. Employee.salary < (Employee.tenure * 1000) + 40000

You can also nest queries, for example tweets by users whose username starts with “a”:

the "<<" operator signifies an "IN" query
Tweet.select().where(
 Tweet.user << User.select().where(fn.Lower(fn.Substr(User.username, 1, 1)) == 'a')
)

Note

If you are already familiar with Django’s ORM, you can use the “double underscore”
syntax using the SelectQuery.filter() method:

>>> for tweet in Tweet.filter(user__username='Charlie'):
... print tweet.message
hello world
this is fun
look at this picture of my food

To perform OR lookups, use the special DQ object:

>>> User.filter(DQ(username='Charlie') | DQ(username='Peewee Herman'))

Warning

The Zen of Python says “There should be one– and preferably only one –obvious way to do it.”
The django-style filtering is supported for backwards compatibility with 1.0, so if you can, its
probably best not to use it.

Check the docs for some more example queries.

Sorting records

>>> for t in Tweet.select().order_by(Tweet.created_date):
... print t.pub_date
...
2010-01-01 00:00:00
2011-06-07 14:08:48
2011-06-07 14:12:57

>>> for t in Tweet.select().order_by(Tweet.created_date.desc()):
... print t.pub_date
...
2011-06-07 14:12:57
2011-06-07 14:08:48
2010-01-01 00:00:00

You can also order across joins. Assuming you want
to order tweets by the username of the author, then by created_date:

>>> qry = Tweet.select().join(User).order_by(User.username, Tweet.created_date.desc())

Paginating records

The paginate method makes it easy to grab a “page” or records – it takes two
parameters, page_number, and items_per_page:

>>> for tweet in Tweet.select().order_by(Tweet.id).paginate(2, 10):
... print tweet.message
...
tweet 10
tweet 11
tweet 12
tweet 13
tweet 14
tweet 15
tweet 16
tweet 17
tweet 18
tweet 19

Counting records

You can count the number of rows in any select query:

>>> Tweet.select().count()
100
>>> Tweet.select().where(Tweet.id > 50).count()
50

Iterating over lots of rows

To limit the amount of memory used by peewee when iterating over a lot of rows (i.e.
you may be dumping data to csv), use the iterator() method on the QueryResultWrapper.
This method allows you to iterate without caching each model returned, using much less
memory when iterating over large result sets:

let's assume we've got 1M stat objects to dump to csv
stats_qr = Stat.select().execute()

our imaginary serializer class
serializer = CSVSerializer()

loop over all the stats and serialize
for stat in stats_qr.iterator():
 serializer.serialize_object(stat)

For simple queries you can see further speed improvements by using the SelectQuery.naive()
query method. See the documentation for details on this optimization.

stats_query = Stat.select().naive() # note we are calling "naive()"
stats_qr = stats_query.execute()

for stat in stats_qr.iterator():
 serializer.serialize_object(stat)

Performing atomic updates

>>> Stat.update(counter=Stat.counter + 1).where(Stat.url == request.url)

Aggregating records

Suppose you have some users and want to get a list of them along with the count
of tweets in each. First I will show you the shortcut:

query = User.select().annotate(Tweet)

This is equivalent to the following:

query = User.select(
 User, fn.Count(Tweet.id).alias('count')
).join(Tweet).group_by(User)

The resulting query will return User objects with all their normal attributes
plus an additional attribute ‘count’ which will contain the number of tweets.
By default it uses an inner join if the foreign key is not nullable, which means
blogs without entries won’t appear in the list. To remedy this, manually specify
the type of join to include users with 0 tweets:

query = User.select().join(Tweet, JOIN_LEFT_OUTER).annotate(Tweet)

You can also specify a custom aggregator:

query = User.select().annotate(Tweet, fn.Max(Tweet.created_date).alias('latest'))

Let’s assume you have a tagging application and want to find tags that have a
certain number of related objects. For this example we’ll use some different
models in a Many-To-Many configuration:

class Photo(Model):
 image = CharField()

class Tag(Model):
 name = CharField()

class PhotoTag(Model):
 photo = ForeignKeyField(Photo)
 tag = ForeignKeyField(Tag)

Now say we want to find tags that have at least 5 photos associated with them:

>>> Tag.select().join(PhotoTag).join(Photo).group_by(Tag).having(fn.Count(Photo.id) > 5)

Yields the following:

SELECT t1."id", t1."name"
FROM "tag" AS t1
INNER JOIN "phototag" AS t2 ON t1."id" = t2."tag_id"
INNER JOIN "photo" AS t3 ON t2."photo_id" = t3."id"
GROUP BY t1."id", t1."name"
HAVING Count(t3."id") > 5

Suppose we want to grab the associated count and store it on the tag:

>>> Tag.select(
... Tag, fn.Count(Photo.id).alias('count')
...).join(PhotoTag).join(Photo).group_by(Tag).having(fn.Count(Photo.id) > 5)

SQL Functions, Subqueries and “Raw expressions”

Suppose you need to want to get a list of all users whose username begins with “a”.
There are a couple ways to do this, but one method might be to use some SQL functions
like LOWER and SUBSTR. To use arbitrary SQL functions, use the special fn()
function to construct queries:

select the users' id, username and the first letter of their username, lower-cased
query = User.select(User, fn.Lower(fn.Substr(User.username, 1, 1)).alias('first_letter'))

alternatively we could select only users whose username begins with 'a'
a_users = User.select().where(fn.Lower(fn.Substr(User.username, 1, 1)) == 'a')

>>> for user in a_users:
... print user.username

There are times when you may want to simply pass in some arbitrary sql. You can do
this using the special R class. One use-case is when referencing an
alias:

we'll query the user table and annotate it with a count of tweets for
the given user
query = User.select(User, fn.Count(Tweet.id).alias('ct')).join(Tweet).group_by(User)

now we will order by the count, which was aliased to "ct"
query = query.order_by(R('ct'))

Working with transactions

Context manager

You can execute queries within a transaction using the transaction context manager,
which will issue a commit if all goes well, or a rollback if an exception is raised:

db = SqliteDatabase(':memory:')

with db.transaction():
 user.delete_instance(recursive=True) # delete user and associated tweets

Decorator

Similar to the context manager, you can decorate functions with the commit_on_success
decorator:

db = SqliteDatabase(':memory:')

@db.commit_on_success
def delete_user(user):
 user.delete_instance(recursive=True)

Changing autocommit behavior

By default, databases are initialized with autocommit=True, you can turn this
on and off at runtime if you like. The behavior below is roughly the same as the
context manager and decorator:

db.set_autocommit(False)
try:
 user.delete_instance(recursive=True)
except:
 db.rollback()
 raise
else:
 db.commit()
finally:
 db.set_autocommit(True)

If you would like to manually control every transaction, simply turn autocommit
off when instantiating your database:

db = SqliteDatabase(':memory:', autocommit=False)

User.create(username='somebody')
db.commit()

Non-integer Primary Keys and other Tricks

Non-integer primary keys

If you would like use a non-integer primary key (which I generally don’t recommend),
you can override the default column_class of the PrimaryKeyField:

from peewee import *

class UUIDModel(Model):
 id = CharField(primary_key=True)

inst = UUIDModel(id=str(uuid.uuid4()))
inst.save() # <-- WRONG!! this will try to do an update

inst.save(force_insert=True) # <-- CORRECT

to update the instance after it has been saved once
inst.save()

Note

Any foreign keys to a model with a non-integer primary key will have the
ForeignKeyField use the same underlying storage type as the primary key
they are related to.

See full documentation on non-integer primary keys.

Bulk loading data or manually specifying primary keys

Sometimes you do not want the database to automatically generate a primary key,
for instance when bulk loading relational data. To handle this on a “one-off”
basis, you can simply tell peewee to turn off auto_increment during the
import:

data = load_user_csv() # load up a bunch of data

User._meta.auto_increment = False # turn off auto incrementing IDs
with db.transaction():
 for row in data:
 u = User(id=row[0], username=row[1])
 u.save(force_insert=True) # <-- force peewee to insert row

User._meta.auto_increment = True

If you always want to have control over the primary key, simply do not use
the PrimaryKeyField type:

class User(BaseModel):
 id = IntegerField(primary_key=True)
 username = CharField()

>>> u = User.create(id=999, username='somebody')
>>> u.id
999
>>> User.get(User.username == 'somebody').id
999

Introspecting databases

If you’d like to generate some models for an existing database, you can try
out the database introspection tool “pwiz” that comes with peewee.

Usage:

python pwiz.py my_postgresql_database

It works with postgresql, mysql and sqlite:

python pwiz.py test.db --engine=sqlite

pwiz will generate code for:

	database connection object

	a base model class to use this connection

	models that were introspected from the database tables

The generated code is written to stdout.

Schema migrations

Currently peewee does not have support for automatic schema migrations.

 Copyright charles leifer.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	peewee 2.0.0 documentation

Example app

[image: ../_images/tweepee.jpg]
peewee ships with an example web app that runs on the
Flask [http://flask.pocoo.org/] microframework. If you already have flask
and its dependencies installed you should be good to go, otherwise install from
the included requirements file.

cd example/
pip install -r requirements.txt

Running the example

After ensuring that flask, jinja2, werkzeug and sqlite3 are all installed,
switch to the example directory and execute the run_example.py script:

python run_example.py

Diving into the code

Models

In the spirit of the ur-python framework, django, peewee uses declarative model
definitions. If you’re not familiar with django, the idea is that you declare
a class with some members which map directly to the database schema. For the
twitter clone, there are just three models:

	User:

	represents a user account and stores the username and password, an email
address for generating avatars using gravatar, and a datetime field
indicating when that account was created

	Relationship:

	this is a “utility model” that contains two foreign-keys to
the User model and represents “following”.

	Message:

	analagous to a tweet. this model stores the text content of
the message, when it was created, and who posted it (foreign key to User).

If you like UML, this is basically what it looks like:

[image: ../_images/schema.jpg]
Here is what the code looks like:

create a peewee database instance -- our models will use this database to
persist information
database = SqliteDatabase(DATABASE)

model definitions -- the standard "pattern" is to define a base model class
that specifies which database to use. then, any subclasses will automatically
use the correct storage. for more information, see:
http://charlesleifer.com/docs/peewee/peewee/models.html#model-api-smells-like-django
class BaseModel(Model):
 class Meta:
 database = database

the user model specifies its fields (or columns) declaratively, like django
class User(BaseModel):
 username = CharField()
 password = CharField()
 email = CharField()
 join_date = DateTimeField()

 class Meta:
 order_by = ('username',)

 # it often makes sense to put convenience methods on model instances, for
 # example, "give me all the users this user is following":
 def following(self):
 # query other users through the "relationship" table
 return User.select().join(
 Relationship, on=Relationship.to_user,
).where(Relationship.from_user == self)

 def followers(self):
 return User.select().join(
 Relationship, on=Relationship.from_user,
).where(Relationship.to_user == self)

 def is_following(self, user):
 return Relationship.select().where(
 (Relationship.from_user == self) &
 (Relationship.to_user == user)
).count() > 0

 def gravatar_url(self, size=80):
 return 'http://www.gravatar.com/avatar/%s?d=identicon&s=%d' % \
 (md5(self.email.strip().lower().encode('utf-8')).hexdigest(), size)

this model contains two foreign keys to user -- it essentially allows us to
model a "many-to-many" relationship between users. by querying and joining
on different columns we can expose who a user is "related to" and who is
"related to" a given user
class Relationship(BaseModel):
 from_user = ForeignKeyField(User, related_name='relationships')
 to_user = ForeignKeyField(User, related_name='related_to')

a dead simple one-to-many relationship: one user has 0..n messages, exposed by
the foreign key. because we didn't specify, a users messages will be accessible
as a special attribute, User.message_set
class Message(BaseModel):
 user = ForeignKeyField(User)
 content = TextField()
 pub_date = DateTimeField()

 class Meta:
 order_by = ('-pub_date',)

peewee supports a handful of field types which map to different column types in
sqlite. Conversion between python and the database is handled transparently,
including the proper handling of None/NULL.

Note

You might have noticed that we created a BaseModel which sets the
database, and then all the other models extend the BaseModel. This is
a good way to make sure all your models are talking to the right database.

Creating the initial tables

In order to start using the models, its necessary to create the tables. This is
a one-time operation and can be done quickly using the interactive interpreter.

Open a python shell in the directory alongside the example app and execute the
following:

>>> from app import *
>>> create_tables()

The create_tables() method is defined in the app module and looks like this:

def create_tables():
 User.create_table()
 Relationship.create_table()
 Message.create_table()

Every model has a create_table() classmethod which runs a CREATE TABLE
statement in the database. Usually this is something you’ll only do once,
whenever a new model is added.

Note

Adding fields after the table has been created will required you to
either drop the table and re-create it or manually add the columns using ALTER TABLE.

Note

If you want, you can use instead write User.create_table(True) and it will
fail silently if the table already exists.

Connecting to the database

You may have noticed in the above model code that there is a class defined on the
base model named Meta that sets the database attribute. peewee
allows every model to specify which database it uses, defaulting to “peewee.db”.
Since you probably want a bit more control, you can instantiate your own
database and point your models at it. This is a peewee idiom:

config
DATABASE = 'tweepee.db'

... more config here, omitted

database = SqliteDatabase(DATABASE) # tell our models to use "tweepee.db"

Because sqlite likes to have a separate connection per-thread, we will tell
flask that during the request/response cycle we need to create a connection to
the database. Flask provides some handy decorators to make this a snap:

@app.before_request
def before_request():
 g.db = database
 g.db.connect()

@app.after_request
def after_request(response):
 g.db.close()
 return response

Note

We’re storing the db on the magical variable g - that’s a
flask-ism and can be ignored as an implementation detail. The meat of this code
is in the idea that we connect to our db every request and close that connection
every response. Django does the exact same thing [http://code.djangoproject.com/browser/django/tags/releases/1.2.3/django/db/__init__.py#L80].

Doing queries

In the User model there are a few instance methods that encapsulate some
user-specific functionality, i.e.

	following(): who is this user following?

	followers(): who is following this user?

These methods are rather similar in their implementation but with one key
difference:

def following(self):
 # query other users through the "relationship" table
 return User.select().join(
 Relationship, on=Relationship.to_user,
).where(Relationship.from_user == self)

def followers(self):
 return User.select().join(
 Relationship, on=Relationship.from_user,
).where(Relationship.to_user == self)

The queries end up looking like:

following:
SELECT t1."id", t1."username", t1."password", t1."email", t1."join_date"
FROM "user" AS t1
INNER JOIN "relationship" AS t2
 ON t1."id" = t2."to_user_id" # <-- joining on to_user_id
WHERE t2."from_user_id" = ?
ORDER BY t1."username" ASC

followers
SELECT t1."id", t1."username", t1."password", t1."email", t1."join_date"
FROM user AS t1
INNER JOIN relationship AS t2
 ON t1."id" = t2."from_user_id" # <-- joining on from_user_id
WHERE t2."to_user_id" = ?
ORDER BY t1."username" ASC

Creating new objects

So what happens when a new user wants to join the site? Looking at the
business end of the join() view, we can that it does a quick check to see
if the username is taken, and if not executes a create().

Much like the create() method, all models come with a built-in method called
get_or_create() which is used when one user follows another:

Relationship.get_or_create(
 from_user=session['user'], # <-- the logged-in user
 to_user=user, # <-- the user they want to follow
)

Doing subqueries

If you are logged-in and visit the twitter homepage, you will see tweets from
the users that you follow. In order to implement this, it is necessary to do
a subquery:

python code
messages = Message.select().where(
 Message.user << user.following()
)

Results in the following SQL query:

SELECT t1."id", t1."user_id", t1."content", t1."pub_date"
FROM "message" AS t1
WHERE t1."user_id" IN (
 SELECT t2."id"
 FROM "user" AS t2
 INNER JOIN "relationship" AS t3
 ON t2."id" = t3."to_user_id"
 WHERE t3."from_user_id" = ?
 ORDER BY t1."username" ASC
)

peewee supports doing subqueries on any ForeignKeyField or PrimaryKeyField.

What else is of interest here?

There are a couple other neat things going on in the example app that are worth
mentioning briefly.

	Support for paginating lists of results is implemented in a simple function called
object_list (after it’s corollary in Django). This function is used by all
the views that return lists of objects.

def object_list(template_name, qr, var_name='object_list', **kwargs):
 kwargs.update(
 page=int(request.args.get('page', 1)),
 pages=qr.count() / 20 + 1
)
 kwargs[var_name] = qr.paginate(kwargs['page'])
 return render_template(template_name, **kwargs)

	Simple authentication system with a login_required decorator. The first
function simply adds user data into the current session when a user successfully
logs in. The decorator login_required can be used to wrap view functions,
checking for whether the session is authenticated and if not redirecting to the
login page.

def auth_user(user):
 session['logged_in'] = True
 session['user'] = user
 session['username'] = user.username
 flash('You are logged in as %s' % (user.username))

def login_required(f):
 @wraps(f)
 def inner(*args, **kwargs):
 if not session.get('logged_in'):
 return redirect(url_for('login'))
 return f(*args, **kwargs)
 return inner

	Return a 404 response instead of throwing exceptions when an object is not
found in the database.

def get_object_or_404(model, **kwargs):
 try:
 return model.get(**kwargs)
 except model.DoesNotExist:
 abort(404)

Note

Like these snippets and interested in more? Check out flask-peewee [https://github.com/coleifer/flask-peewee] -
a flask plugin that provides a django-like Admin interface, RESTful API, Authentication and
more for your peewee models.

 Copyright charles leifer.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	peewee 2.0.0 documentation

Model API (smells like django)

Models and their fields map directly to database tables and columns. Consider
the following:

from peewee import *

db = SqliteDatabase('test.db')

create a base model class that our application's models will extend
class BaseModel(Model):
 class Meta:
 database = db

class User(BaseModel):
 username = CharField()

class Tweet(BaseModel):
 user = ForeignKeyField(User, related_name='tweets')
 message = TextField()
 created_date = DateTimeField(default=datetime.datetime.now)
 is_published = BooleanField(default=True)

This is a typical example of how to specify models with peewee. There are several
things going on:

	Create an instance of a Database

db = SqliteDatabase('test.db')

This establishes an object, db, which is used by the models to connect to and
query the database. There can be multiple database instances per application, but,
as I hope is obvious, ForeignKeyField related models must be on the same
database.

	Create a base model class which specifies our database

class BaseModel(Model):
 class Meta:
 database = db

Model configuration is kept namespaced in a special class called Meta – this
convention is borrowed from Django, which does the same thing. Meta configuration
is passed on to subclasses, so this code basically allows all our project’s models
to connect to our database.

	Declare a model or two

class User(BaseModel):
 username = CharField()

Model definition is pretty similar to django or sqlalchemy – you basically define
a class which represents a single table in the database, then its attributes (which
are subclasses of Field) represent columns.

Models provide methods for creating/reading/updating/deleting rows in the
database.

Creating tables

In order to start using these models, its necessary to open a connection to the
database and create the tables first:

connect to our database
db.connect()

create the tables
User.create_table()
Tweet.create_table()

Note

Strictly speaking, the explicit call to connect() is not
necessary, but it is good practice to be explicit about when you are opening
and closing connections.

Model instances

Assuming you’ve created the tables and connected to the database, you are now
free to create models and execute queries.

Creating models in the interactive interpreter is a snap.

	Use the Model.create() classmethod:

>>> user = User.create(username='charlie')
>>> tweet = Tweet.create(
... message='http://www.youtube.com/watch?v=xdhLQCYQ-nQ',
... user=user
...)

>>> tweet.user.username
'charlie'

	Build up the instance programmatically:

>>> user = User()
>>> user.username = 'charlie'
>>> user.save()

Traversing foriegn keys

As you can see from above, the foreign key from Tweet to User can be
traversed automatically:

>>> tweet.user.username
'charlie'

The reverse is also true, we can iterate a User objects associated Tweets:

>>> for tweet in user.tweets:
... print tweet.message
...
http://www.youtube.com/watch?v=xdhLQCYQ-nQ

Under the hood, the tweets attribute is just a SelectQuery with
the where clause prepopulated to point at the right User instance:

>>> user.tweets
<peewee.SelectQuery object at 0x151f510>

Model options

In order not to pollute the model namespace, model-specific configuration is
placed in a special class called Meta, which is a convention borrowed from
the django framework:

from peewee import *

custom_db = SqliteDatabase('custom.db')

class CustomModel(Model):
 class Meta:
 database = custom_db

This instructs peewee that whenever a query is executed on CustomModel to use
the custom database.

Note

Take a look at the sample models - you will notice that
we created a BaseModel that defined the database, and then extended. This
is the preferred way to define a database and create models.

There are several options you can specify as Meta attributes:

	database: specifies a Database instance to use with this model

	db_table: the name of the database table this model maps to

	indexes: a list of fields to index

	order_by: a sequence of columns to use as the default ordering for this model

Specifying indexes:

class Transaction(Model):
 from_acct = CharField()
 to_acct = CharField()
 amount = DecimalField()
 date = DateTimeField()

 class Meta:
 indexes = (
 # create a unique on from/to/date
 (('from_acct', 'to_acct', 'date'), True),

 # create a non-unique on from/to
 (('from_acct', 'to_acct'), False),
)

Example of ordering:

class Tweet(Model):
 message = TextField()
 created = DateTimeField()

 class Meta:
 # order by created date descending
 ordering = ('-created',)

Note

These options are “inheritable”, which means that you can define a database
adapter on one model, then subclass that model and the child models will use
that database.

my_db = PostgresqlDatabase('my_db')

class BaseModel(Model):
 class Meta:
 database = my_db

class SomeModel(BaseModel):
 field1 = CharField()

 class Meta:
 ordering = ('field1',)
 # no need to define database again since it will be inherited from
 # the BaseModel

Model methods

	
class Model

	
	
save([force_insert=False])

	Save the given instance, creating or updating depending on whether it has a
primary key. If force_insert=True an INSERT will be issued regardless
of whether or not the primary key exists.

example:

>>> some_obj.title = 'new title' # <-- does not touch the database
>>> some_obj.save() # <-- change is persisted to the db

	
classmethod create(**attributes)

	

	Parameters:	attributes – key/value pairs of model attributes

Create an instance of the Model with the given attributes set.

example:

>>> user = User.create(username='admin', password='test')

	
delete_instance([recursive=False[, delete_nullable=False]])

	

	Parameters:	
	recursive – Delete this instance and anything that depends on it,
optionally updating those that have nullable dependencies

	delete_nullable – If doing a recursive delete, delete all dependent
objects regardless of whether it could be updated to NULL

Delete the given instance. Any foreign keys set to cascade on
delete will be deleted automatically. For more programmatic control,
you can call with recursive=True, which will delete any non-nullable
related models (those that are nullable will be set to NULL). If you
wish to delete all dependencies regardless of whether they are nullable,
set delete_nullable=True.

example:

>>> some_obj.delete_instance() # <-- it is gone forever

	
classmethod get(*args, **kwargs)

	

	Parameters:	
	args – a list of query expressions, e.g. Usre.username == 'foo'

	kwargs – a mapping of column + lookup to value, e.g. “age__gt=55”

	Return type:	Model instance or raises DoesNotExist exception

Get a single row from the database that matches the given query. Raises a
<model-class>.DoesNotExist if no rows are returned:

>>> user = User.get(User.username == username, User.password == password)

This method is also expose via the SelectQuery, though it takes
no parameters:

>>> active = User.select().where(User.active == True)
>>> try:
... users = active.where(User.username == username, User.password == password)
... user = users.get()
... except User.DoesNotExist:
... user = None

Note

the “kwargs” style syntax is provided for compatibility with
version 1.0. The expression-style syntax is preferable.

	
classmethod get_or_create(**attributes)

	

	Parameters:	attributes – key/value pairs of model attributes

	Return type:	a Model instance

Get the instance with the given attributes set. If the instance
does not exist it will be created.

example:

>>> CachedObj.get_or_create(key=key, val=some_val)

	
classmethod select(*selection)

	

	Parameters:	selection – a list of model classes, field instances, functions or expressions

	Return type:	a SelectQuery for the given Model

example:

>>> User.select().where(User.active == True).order_by(User.username)
>>> Tweet.select(Tweet, User).join(User).order_by(Tweet.created_date.desc())

	
classmethod update(**query)

	

	Return type:	an UpdateQuery for the given Model

example:

>>> q = User.update(active=False).where(User.registration_expired == True)
>>> q.execute() # <-- execute it

	
classmethod delete()

	

	Return type:	a DeleteQuery for the given Model

example:

>>> q = User.delete().where(User.active == False)
>>> q.execute() # <-- execute it

Warning

Assume you have a model instance – calling model_instance.delete()
does not delete it.

	
classmethod insert(**query)

	

	Return type:	an InsertQuery for the given Model

example:

>>> q = User.insert(username='admin', active=True, registration_expired=False)
>>> q.execute()
1

	
classmethod raw(sql, *params)

	

	Return type:	a RawQuery for the given Model

example:

>>> q = User.raw('select id, username from users')
>>> for user in q:
... print user.id, user.username

	
classmethod filter(*args, **kwargs)

	

	Parameters:	
	args – a list of DQ or Node objects

	kwargs – a mapping of column + lookup to value, e.g. “age__gt=55”

	Return type:	SelectQuery with appropriate WHERE clauses

Provides a django-like syntax for building a query. The key difference
between filter() and SelectQuery.where()
is that filter() supports traversing joins using
django’s “double-underscore” syntax:

>>> sq = Entry.filter(blog__title='Some Blog')

This method is chainable:

>>> base_q = User.filter(active=True)
>>> some_user = base_q.filter(username='charlie')

Note

this method is provided for compatibility with peewee 1.0

	
classmethod create_table([fail_silently=False])

	

	Parameters:	fail_silently – If set to True, the method will check for the existence of the table
before attempting to create.

Create the table for the given model.

example:

>>> database.connect()
>>> SomeModel.create_table() # <-- creates the table for SomeModel

	
classmethod drop_table([fail_silently=False])

	

	Parameters:	fail_silently – If set to True, the query will check for the existence of
the table before attempting to remove.

Drop the table for the given model.

Note

Cascading deletes are not handled by this method, nor is the removal
of any constraints.

	
classmethod table_exists()

	

	Return type:	Boolean whether the table for this model exists in the database

 Copyright charles leifer.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	peewee 2.0.0 documentation

Fields

The Field class is used to describe the mapping of Model
attributes to database columns. Each field type has a corresponding SQL storage
class (i.e. varchar, int), and conversion between python data types and underlying
storage is handled transparently.

When creating a Model class, fields are defined as class-level attributes.
This should look familiar to users of the django framework. Here’s an example:

from peewee import *

class User(Model):
 username = CharField()
 join_date = DateTimeField()
 about_me = TextField()

There is one special type of field, ForeignKeyField, which allows you
to expose foreign-key relationships between models in an intuitive way:

class Message(Model):
 user = ForeignKeyField(User, related_name='messages')
 body = TextField()
 send_date = DateTimeField()

This allows you to write code like the following:

>>> print some_message.user.username
Some User

>>> for message in some_user.messages:
... print message.body
some message
another message
yet another message

Field types table

Parameters accepted by all field types and their default values:

	null = False – boolean indicating whether null values are allowed to be stored

	index = False – boolean indicating whether to create an index on this column

	unique = False – boolean indicating whether to create a unique index on this column

	verbose_name = None – string representing the “user-friendly” name of this field

	help_text = None – string representing any helpful text for this field

	db_column = None – string representing the underlying column to use if different, useful for legacy databases

	default = None – any value to use as a default for uninitialized models

	choices = None – an optional iterable containing 2-tuples of value, display

	primary_key = False – whether this field is the primary key for the table

	sequence = None – sequence to populate field (if backend supports it)

	Field Type
	Sqlite
	Postgresql
	MySQL

	CharField
	varchar
	varchar
	varchar

	TextField
	text
	text
	longtext

	DateTimeField
	datetime
	timestamp
	datetime

	IntegerField
	integer
	integer
	integer

	BooleanField
	smallint
	boolean
	bool

	FloatField
	real
	real
	real

	DoubleField
	real
	double precision
	double precision

	BigIntegerField
	integer
	bigint
	bigint

	DecimalField
	decimal
	numeric
	numeric

	PrimaryKeyField
	integer
	serial
	integer

	ForeignKeyField
	integer
	integer
	integer

	DateField
	date
	date
	date

	TimeField
	time
	time
	time

Some fields take special parameters...

	Field type
	Special Parameters

	CharField
	max_length

	DateTimeField
	formats

	DateField
	formats

	TimeField
	formats

	DecimalField
	max_digits, decimal_places,
auto_round, rounding

	ForeignKeyField
	rel_model, related_name,
cascade, extra

A note on validation

Both default and choices could be implemented at the database level as
DEFAULT and CHECK CONSTRAINT respectively, but any application change would
require a schema change. Because of this, default is implemented purely in
python and choices are not validated but exist for metadata purposes only.

Self-referential Foreign Keys

Since the class is not available at the time the field is declared,
when creating a self-referential foreign key pass in ‘self’ as the “to”
relation:

class Category(Model):
 name = CharField()
 parent = ForeignKeyField('self', related_name='children', null=True)

Implementing Many to Many

Peewee does not provide a “field” for many to many relationships the way that
django does – this is because the “field” really is hiding an intermediary
table. To implement many-to-many with peewee, you will therefore create the
intermediary table yourself and query through it:

class Student(Model):
 name = CharField()

class Course(Model):
 name = CharField()

class StudentCourse(Model):
 student = ForeignKeyField(Student)
 course = ForeignKeyField(Course)

To query, let’s say we want to find students who are enrolled in math class:

for student in Student.select().join(StudentCourse).join(Course).where(Course.name == 'math'):
 print student.name

To query what classes a given student is enrolled in:

for course in Course.select().join(StudentCourse).join(Student).where(Student.name == 'da vinci'):
 print course.name

To efficiently iterate over a many-to-many relation, i.e., list all students
and their respective courses, we will query the “through” model StudentCourse
and “precompute” the Student and Course:

query = StudentCourse.select(
 StudentCourse, Student, Course)
).join(Course).switch(StudentCourse).join(Student)

To print a list of students and their courses you might do the following:

last = None
for student_course in query:
 student = student_course.student
 if student != last:
 last = student
 print 'Student: %s' % student.name
 print ' - %s' % student_course.course.name

Since we selected all fields from Student and Course in the select
clause of the query, these foreign key traversals are “free” and we’ve done the
whole iteration with just 1 query.

Non-integer Primary Keys

First of all, let me say that I do not think using non-integer primary keys is a
good idea. The cost in storage is higher, the index lookups will be slower, and
foreign key joins will be more expensive. That being said, here is how you can
use non-integer pks in peewee.

from peewee import Model, PrimaryKeyField, VarCharColumn

class UUIDModel(Model):
 # explicitly declare a primary key field, and specify the class to use
 id = CharField(primary_key=True)

Auto-increment IDs are, as their name says, automatically generated for you when
you insert a new row into the database. The way peewee determines whether to
do an INSERT versus an UPDATE comes down to checking whether the primary
key value is None. If None, it will do an insert, otherwise it does an
update on the existing value. Since, with our uuid example, the database driver
won’t generate a new ID, we need to specify it manually. When we call save()
for the first time, pass in force_insert = True:

inst = UUIDModel(id=str(uuid.uuid4()))
inst.save() # <-- WRONG!! this will try to do an update

inst.save(force_insert=True) # <-- CORRECT

to update the instance after it has been saved once
inst.save()

Note

Any foreign keys to a model with a non-integer primary key will have the
ForeignKeyField use the same underlying storage type as the primary key
they are related to.

Field class API

	
class Field

	The base class from which all other field types extend.

	
db_field = '<some field type>'

	Attribute used to map this field to a column type, e.g. “string” or “datetime”

	
template = '%(column_type)s'

	A template for generating the SQL for this field

	
__init__(null=False, index=False, unique=False, verbose_name=None, help_text=None, db_column=None, default=None, choices=None, *args, **kwargs)

	

	Parameters:	
	null – this column can accept None or NULL values

	index – create an index for this column when creating the table

	unique – create a unique index for this column when creating the table

	verbose_name – specify a “verbose name” for this field, useful for metadata purposes

	help_text – specify some instruction text for the usage/meaning of this field

	db_column – column class to use for underlying storage

	default – a value to use as an uninitialized default

	choices – an iterable of 2-tuples mapping value to display

	primary_key (boolean) – whether to use this as the primary key for the table

	sequence – name of sequence (if backend supports it)

	
db_value(value)

	

	Parameters:	value – python data type to prep for storage in the database

	Return type:	converted python datatype

	
python_value(value)

	

	Parameters:	value – data coming from the backend storage

	Return type:	python data type

	
coerce(value)

	This method is a shorthand that is used, by default, by both db_value and
python_value. You can usually get away with just implementing this.

	Parameters:	value – arbitrary data from app or backend

	Return type:	python data type

	
field_attributes()

	This method is responsible for return a dictionary containing the default
field attributes for the column, e.g. {'max_length': 255}

	Return type:	a python dictionary

	
class_prepared()

	Simple hook for Field classes to indicate when the Model
class the field exists on has been created.

	
class CharField

	Stores: small strings (0-255 bytes)

	
class TextField

	Stores: arbitrarily large strings

	
class DateTimeField

	Stores: python datetime.datetime instances

Accepts a special parameter formats, which contains a list of formats
the datetime can be encoded with. The default behavior is:

'%Y-%m-%d %H:%M:%S.%f' # year-month-day hour-minute-second.microsecond
'%Y-%m-%d %H:%M:%S' # year-month-day hour-minute-second
'%Y-%m-%d' # year-month-day

Note

If the incoming value does not match a format, it will be returned as-is

	
class DateField

	Stores: python datetime.date instances

Accepts a special parameter formats, which contains a list of formats
the date can be encoded with. The default behavior is:

'%Y-%m-%d' # year-month-day
'%Y-%m-%d %H:%M:%S' # year-month-day hour-minute-second
'%Y-%m-%d %H:%M:%S.%f' # year-month-day hour-minute-second.microsecond

Note

If the incoming value does not match a format, it will be returned as-is

	
class TimeField

	Stores: python datetime.time instances

Accepts a special parameter formats, which contains a list of formats
the time can be encoded with. The default behavior is:

'%H:%M:%S.%f' # hour:minute:second.microsecond
'%H:%M:%S' # hour:minute:second
'%H:%M' # hour:minute
'%Y-%m-%d %H:%M:%S.%f' # year-month-day hour-minute-second.microsecond
'%Y-%m-%d %H:%M:%S' # year-month-day hour-minute-second

Note

If the incoming value does not match a format, it will be returned as-is

	
class IntegerField

	Stores: integers

	
class BooleanField

	Stores: True / False

	
class FloatField

	Stores: floating-point numbers

	
class DecimalField

	Stores: decimal numbers

	
class PrimaryKeyField

	Stores: auto-incrementing integer fields suitable for use as primary key.

	
class ForeignKeyField

	Stores: relationship to another model

	
__init__(to[, related_name=None[, ...]])

	

	Parameters:	
	rel_model – related Model class or the string ‘self’ if declaring
a self-referential foreign key

	related_name – attribute to expose on related model

class User(Model):
 name = CharField()

class Tweet(Model):
 user = ForeignKeyField(User, related_name='tweets')
 content = TextField()

"user" attribute
>>> some_tweet.user
<User: charlie>

"tweets" related name attribute
>>> for tweet in charlie.tweets:
... print tweet.content
Some tweet
Another tweet
Yet another tweet

 Copyright charles leifer.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	peewee 2.0.0 documentation

Querying API

Constructing queries

Queries in peewee are constructed one piece at a time.

The “pieces” of a peewee query are generally representative of clauses you might
find in a SQL query. Most methods are chainable, so you build your query up
one clause at a time. This way, rather complex queries are possible.

Here is a barebones select query:

>>> user_q = User.select() # <-- query is not executed
>>> user_q
<peewee.SelectQuery object at 0x7f6b0810c610>

>>> [u.username for u in user_q] # <-- query is evaluated here
[u'admin', u'staff', u'editor']

We can build up the query by adding some clauses to it:

>>> user_q = user_q.where(User.username << ['admin', 'editor'])
>>> user_q = user_q.order_by(User.username.desc())
>>> [u.username for u in user_q] # <-- query is re-evaluated here
[u'editor', u'admin']

Looking at some simple queries

	Get active users:

	User.select().where(User.active==True)

	Get users who are either staff or superusers:

	User.select().where((User.is_staff==True) | (User.is_superuser==True))

	Get tweets by user named “charlie”:

	Tweet.select().join(User).where(User.username=='charlie')

	Get tweets by staff or superusers (assumes FK relationship):

	Tweet.select().join(User).where(
 (User.is_staff==True) | (User.is_superuser==True)
)

Where clause

All queries except InsertQuery support the where() method. If you are
familiar with Django’s ORM, it is analagous to the filter() method.

>>> User.select().where(User.is_staff == True)

Note

User.select() is equivalent to SelectQuery(User).

Joining

You can join on tables related to one another by ForeignKeyField. The join()
method acts on the Model that is the current “query context”.
This is either:

	the model the query class was initialized with

	the model most recently JOINed on

There are three types of joins by default:

	JOIN_INNER (default)

	JOIN_LEFT_OUTER

	JOIN_FULL

Here is an example using JOINs:

>>> User.select().join(Blog).where(User.is_staff == True, Blog.status == LIVE)

The above query grabs all staff users who have a blog that is “LIVE”. This next does the
inverse: grabs all the blogs that are live whose author is a staffer:

>>> Blog.select().join(User).where(User.is_staff == True, Blog.status == LIVE)

Another way to write the above query would be to use a subquery:

>>> staff = User.select().where(User.is_staff == true)
>>> Blog.select().where(Blog.status == LIVE, Blog.user << staff)

The above bears a little bit of explanation. First off the SQL generated will
not perform any explicit JOIN - it will rather use a subquery in the WHERE
clause:

-- translates roughly to --
SELECT t1.* FROM blog AS t1
WHERE (
 t1.status = ? AND
 t1.user_id IN (
 SELECT t2.id FROM user AS t2 WHERE t2.is_staff = ?
)
)

And here it is using joins:

-- and here it would be if using joins --
SELECT t1.* FROM blog AS t1
INNER JOIN user AS t2
 ON t1.user_id = t2.id
WHERE
 t1.status = ? AND
 t2.is_staff = ?

Column lookups

The other bit that’s unique about the query is that it specifies "user__in".
Users familiar with Django will recognize this syntax - lookups other than “=”
are signified by a double-underscore followed by the lookup type. The following
lookup types are available in peewee:

	Lookup
	Meaning

	==
	x equals y

	<
	x is less than y

	<=
	x is less than or equal to y

	>
	x is greater than y

	>=
	x is greater than or equal to y

	!=
	x is not equal to y

	<<
	x IN y, where y is a list or query

	>>
	x IS y, where y is None/NULL

	%
	x LIKE y where y may contain wildcards

	**
	x ILIKE y where y may contain wildcards

Performing advanced queries

As you may have noticed, all the examples up to now have shown queries that
combine multiple clauses with “AND”. To create arbitrarily complex queries,
simply use python’s bitwise “and” and “or” operators:

>>> sq = User.select().where(
... (User.is_staff == True) |
... (User.is_superuser == True)
...)

The WHERE clause will look something like:

WHERE (is_staff = ? OR is_superuser = ?)

In order to negate an expression, use the bitwise “invert” operator:

>>> staff_users = User.select().where(is_staff=True)
>>> Tweet.select().where(
... ~(Tweet.user << staff_users)
...)

This query generates roughly the following SQL:

SELECT t1.* FROM blog AS t1
WHERE
 NOT t1.user_id IN (
 SELECT t2.id FROM user AS t2 WHERE t2.is_staff = ?
)

Rather complex lookups are possible:

>>> sq = User.select().where(
... ((User.is_staff == True) | (User.is_superuser == True)) &
... (User.join_date >= datetime(2009, 1, 1)
...)

This generates roughly the following SQL:

SELECT * FROM user
WHERE (
 (is_staff = ? OR is_superuser = ?) AND
 (join_date >= ?)
)

Note

If you need more power, check out RawQuery

Comparing against column data

Suppose you have a model that looks like the following:

class WorkerProfiles(Model):
 salary = IntegerField()
 desired = IntegerField()
 tenure = IntegerField()

What if we want to query WorkerProfiles to find all the rows where “salary” is greater
than “desired” (maybe you want to find out who may be looking for a raise)?

WorkerProfile.select().where(
 WorkerProfile.salary < WorkerProfile.desired
)

We can also create expressions, like to find employees who might not be getting
paid enough based on their tenure:

WorkerProfile.select().where(
 WorkerProfile.salary < (WorkerProfile.tenure * 1000) + 40000
)

Atomic updates

The techniques shown above also work for updating data. Suppose you
are counting pageviews in a special table:

PageView.update(count=PageView.count + 1).where(
 PageView.url == request.url
)

The “fn” helper

	
class fn

	A helper class that will convert arbitrary function calls to SQL function calls.

SQL provides a number of helper functions as a part of the language. These functions
can be used to calculate counts and sums over rows, perform string manipulations,
do complex math, and more. There are a lot of functions.

To express functions in peewee, use the fn object. The way it works is
anything to the right of the “dot” operator will be treated as a function. You can
pass that function arbitrary parameters which can be other valid expressions.

For example:

	Peewee expression
	Equivalent SQL

	fn.Count(Tweet.id).alias('count')
	Count(t1."id") AS count

	fn.Lower(fn.Substr(User.username, 1, 1))
	Lower(Substr(t1."username", 1, 1))

	fn.Rand().alias('random')
	Rand() AS random

	fn.Stddev(Employee.salary).alias('sdv')
	Stddev(t1."salary") AS sdv

Functions can be used as any part of a query:

	select

	where

	group_by

	order_by

	having

	update query

	insert query

Aggregating records

Suppose you have some users and want to get a list of them along with the count
of tweets each has made. First I will show you the shortcut:

query = User.select().annotate(Tweet)

This is equivalent to the following:

query = User.select(
 User, fn.Count(Tweet.id).alias('count')
).join(Tweet).group_by(User)

The resulting query will return User objects with all their normal attributes
plus an additional attribute ‘count’ which will contain the number of tweets.
By default it uses an inner join if the foreign key is not nullable, which means
users without tweets won’t appear in the list. To remedy this, manually specify
the type of join to include users with 0 tweets:

query = User.select().join(Tweet, JOIN_LEFT_OUTER).annotate(Tweet)

You can also specify a custom aggregator. In the following query we will annotate
the users with the date of their most recent tweet:

query = User.select().annotate(Tweet, fn.Max(Tweet.created_date).alias('latest'))

Conversely, sometimes you want to perform an aggregate query that returns a
scalar value, like the “max id”. Queries like this can be executed by using
the aggregate() method:

most_recent_tweet = Tweet.select().aggregate(fn.Max(Tweet.created_date))

SQL Functions

Arbitrary SQL functions can be expressed using the fn function.

Selecting users and counts of tweets:

>>> users = User.select(User, fn.Count(Tweet.id).alias('count')).join(Tweet).group_by(User)
>>> for user in users:
... print user.username, 'posted', user.count, 'tweets'

This functionality can also be used as part of the WHERE or HAVING clauses:

>>> a_users = User.select().where(fn.Lower(fn.Substr(User.username, 1, 1)) == 'a')
>>> for user in a_users:
... print user.username

alpha
Alton

Saving Queries by Selecting Related Models

Returning to my favorite models, User and Tweet, between which there is a
ForeignKeyField, a common pattern might be to display a list of the
latest 10 tweets with some info about the user that posted them. We can do
this pretty easily:

for tweet in Tweet.select().order_by(Tweet.created_date.desc()).limit(10):
 print '%s, posted on %s' % (tweet.message, tweet.user.username)

Looking at the query log, though, this will cause 11 queries:

	1 query for the tweets

	1 query for every related user (10 total)

This can be optimized into one query very easily, though:

tweets = Tweet.select(Tweet, User).join(User)
for tweet in tweets.order_by(Tweet.created_date.desc()).limit(10):
 print '%s, posted on %s' % (tweet.message, tweet.user.username)

Will cause only one query that looks something like this:

SELECT t1.id, t1.message, t1.user_id, t1.created_date, t2.id, t2.username
FROM tweet AS t1
INNER JOIN user AS t2
 ON t1.user_id = t2.id
ORDER BY t1.created_date desc
LIMIT 10

peewee will handle constructing the objects and you can access them as you would
normally.

Note

Note in the above example the call to .join(User)

This works for following objects “up” the chain, i.e. following foreign key relationships.
The reverse is not true, however – you cannot issue a single query and get all related
sub-objects, i.e. list users and prefetch all related tweets. This can be done by
fetching all tweets (with related user data), then reconstructing the users in python, but
is not provided as part of peewee. For a detailed discussion of working
around this, see the discussion here [https://groups.google.com/forum/?fromgroups#!topic/peewee-orm/RLd2r-eKp7w].

Speeding up simple select queries

Simple select queries can get a performance boost (especially when iterating over large
result sets) by calling naive(). This method simply patches all
attributes directly from the cursor onto the model. For simple queries this should have
no noticeable impact. The main difference is when multiple tables are queried, as in the
previous example:

above example
tweets = Tweet.select(Tweet, User).join(User)
for tweet in tweets.order_by(Tweet.created_date.desc()).limit(10):
 print '%s, posted on %s' % (tweet.message, tweet.user.username)

And here is how you would do the same if using a naive query:

very similar query to the above -- main difference is we're
aliasing the blog title to "blog_title"
tweets = Tweet.select(Tweet, User.username).join(User).naive()
for tweet in tweets.order_by(Tweet.created_date.desc()).limit(10):
 print '%s, posted on %s' % (tweet.message, tweet.username)

Query evaluation

In order to execute a query, it is always necessary to call the execute()
method.

To get a better idea of how querying works let’s look at some example queries
and their return values:

>>> dq = User.delete().where(User.active == False) # <-- returns a DeleteQuery
>>> dq
<peewee.DeleteQuery object at 0x7fc866ada4d0>
>>> dq.execute() # <-- executes the query and returns number of rows deleted
3

>>> uq = User.update(active=True).where(User.id > 3) # <-- returns an UpdateQuery
>>> uq
<peewee.UpdateQuery object at 0x7fc865beff50>
>>> uq.execute() # <-- executes the query and returns number of rows updated
2

>>> iq = User.insert(username='new user') # <-- returns an InsertQuery
>>> iq
<peewee.InsertQuery object at 0x7fc865beff10>
>>> iq.execute() # <-- executes query and returns the new row's PK
8

>>> sq = User.select().where(User.active == True) # <-- returns a SelectQuery
>>> sq
<peewee.SelectQuery object at 0x7fc865b7a510>
>>> qr = sq.execute() # <-- executes query and returns a QueryResultWrapper
>>> qr
<peewee.QueryResultWrapper object at 0x7fc865b7a6d0>
>>> [u.id for u in qr]
[1, 2, 3, 4, 7, 8]
>>> [u.id for u in qr] # <-- re-iterating over qr does not re-execute query
[1, 2, 3, 4, 7, 8]

>>> [u.id for u in sq] # <-- as a shortcut, you can iterate directly over
>>> # a SelectQuery (which uses a QueryResultWrapper
>>> # behind-the-scenes)
[1, 2, 3, 4, 7, 8]

Note

Iterating over a SelectQuery will cause it to be evaluated, but iterating
over it multiple times will not result in the query being executed again.

QueryResultWrapper

As I hope the previous bit showed, Delete, Insert and Update queries are all
pretty straightforward. Select queries are a little bit tricky in that they
return a special object called a QueryResultWrapper. The sole purpose of this
class is to allow the results of a query to be iterated over efficiently. In
general it should not need to be dealt with explicitly.

The preferred method of iterating over a result set is to iterate directly over
the SelectQuery, allowing it to manage the QueryResultWrapper internally.

SelectQuery

	
class SelectQuery

	By far the most complex of the 4 query classes available in
peewee. It supports JOIN operations on other tables, aggregation via GROUP BY and HAVING
clauses, ordering via ORDER BY, and can be iterated and sliced to return only a subset of
results.

	
__init__(model, *selection)

	

	Parameters:	
	model – a Model class to perform query on

	selection – a list of models, fields, functions or expressions

If no query is provided, it will default to all the fields of the given
model.

>>> sq = SelectQuery(User, User.id, User.username)
>>> sq = SelectQuery(User,
... User, fn.Count(Tweet.id).alias('count')
...).join(Tweet).group_by(User)

	
where(*q_or_node)

	

	Parameters:	q_or_node – a list of expressions (Q or Node objects

	Return type:	a SelectQuery instance

>>> sq = SelectQuery(User).where(User.username == 'somebody')
>>> sq = SelectQuery(Blog).where(
... (User.username == 'somebody') |
... (User.username == 'nobody')
...)

Note

where() calls are chainable

	
join(model, join_type=None, on=None)

	

	Parameters:	
	model – the model to join on. there must be a ForeignKeyField between
the current query context and the model passed in.

	join_type – allows the type of JOIN used to be specified explicitly,
one of JOIN_INNER, JOIN_LEFT_OUTER, JOIN_FULL

	on – if multiple foreign keys exist between two models, this parameter
is the ForeignKeyField to join on.

	Return type:	a SelectQuery instance

Generate a JOIN clause from the current query context to the model passed
in, and establishes model as the new query context.

>>> sq = SelectQuery(Tweet).join(User)
>>> sq = SelectQuery(User).join(Relationship, on=Relationship.to_user)

	
group_by(*clauses)

	

	Parameters:	clauses – either a list of model classes or field names

	Return type:	SelectQuery

>>> # get a list of blogs with the count of entries each has
>>> sq = User.select(
... User, fn.Count(Tweet.id).alias('count')
...).join(Tweet).group_by(User)

	
having(*q_or_node)

	

	Parameters:	q_or_node – a list of expressions (Q or Node objects

	Return type:	SelectQuery

>>> sq = User.select(
... User, fn.Count(Tweet.id).alias('count')
...).join(Tweet).group_by(User).having(fn.Count(Tweet.id) > 10)

	
order_by(*clauses)

	

	Parameters:	clauses – a list of fields or calls to field.[asc|desc]()

	Return type:	SelectQuery

example:

>>> User.select().order_by(User.username)
>>> Tweet.select().order_by(Tweet.created_date.desc())
>>> Tweet.select().join(User).order_by(
... User.username, Tweet.created_date.desc()
...)

	
paginate(page_num, paginate_by=20)

	

	Parameters:	
	page_num – a 1-based page number to use for paginating results

	paginate_by – number of results to return per-page

	Return type:	SelectQuery

applies a LIMIT and OFFSET to the query.

>>> User.select().order_by(User.username).paginate(3, 20) # <-- get users 41-60

	
limit(num)

	

	Parameters:	num (int) – limit results to num rows

	
offset(num)

	

	Parameters:	num (int) – offset results by num rows

	
count()

	

	Return type:	an integer representing the number of rows in the current query

>>> sq = SelectQuery(Tweet)
>>> sq.count()
45 # <-- number of tweets
>>> sq.where(Tweet.status == DELETED)
>>> sq.count()
3 # <-- number of tweets that are marked as deleted

	
get()

	

	Return type:	Model instance or raises DoesNotExist exception

Get a single row from the database that matches the given query. Raises a
<model-class>.DoesNotExist if no rows are returned:

>>> active = User.select().where(User.active == True)
>>> try:
... user = active.where(User.username == username).get()
... except User.DoesNotExist:
... user = None

This method is also exposed via the Model api, in which case it
accepts arguments that are translated to the where clause:

>>> user = User.get(User.active == True, User.username == username)

	
exists()

	

	Return type:	boolean whether the current query will return any rows. uses an
optimized lookup, so use this rather than get().

>>> sq = User.select().where(User.active == True)
>>> if sq.where(User.username==username, User.password==password).exists():
... authenticated = True

	
annotate(related_model, aggregation=None)

	

	Parameters:	
	related_model – related Model on which to perform aggregation,
must be linked by ForeignKeyField.

	aggregation – the type of aggregation to use, e.g. fn.Count(Tweet.id).alias('count')

	Return type:	SelectQuery

Annotate a query with an aggregation performed on a related model, for example,
“get a list of users with the number of tweets for each”:

>>> User.select().annotate(Tweet)

if aggregation is None, it will default to fn.Count(related_model.id).alias('count')
but can be anything:

>>> user_latest = User.select().annotate(Tweet, fn.Max(Tweet.created_date).alias('latest'))

Note

If the ForeignKeyField is nullable, then a LEFT OUTER join
may need to be used:

>>> User.select().join(Tweet, JOIN_LEFT_OUTER).annotate(Tweet)

	
aggregate(aggregation)

	

	Parameters:	aggregation – a function specifying what aggregation to perform, for
example fn.Max(Tweet.created_date).

Method to look at an aggregate of rows using a given function and
return a scalar value, such as the count of all rows or the average
value of a particular column.

	
for_update([for_update=True])

	

	Return type:	SelectQuery

indicates that this query should lock rows for update

	
distinct()

	

	Return type:	SelectQuery

indicates that this query should only return distinct rows. results in a
SELECT DISTINCT query.

	
naive()

	

	Return type:	SelectQuery

indicates that this query should only attempt to reconstruct a single model
instance for every row returned by the cursor. if multiple tables were queried,
the columns returned are patched directly onto the single model instance.

Note

this can provide a significant speed improvement when doing simple
iteration over a large result set.

	
switch(model)

	

	Parameters:	model – model to switch the query context to.

	Return type:	a SelectQuery instance

Switches the query context to the given model. Raises an exception if the
model has not been selected or joined on previously. The following example
selects from blog and joins on both entry and user:

>>> sq = SelectQuery(Blog).join(Entry).switch(Blog).join(User)

	
filter(*args, **kwargs)

	

	Parameters:	
	args – a list of DQ or Node objects

	kwargs – a mapping of column + lookup to value, e.g. “age__gt=55”

	Return type:	SelectQuery with appropriate WHERE clauses

Provides a django-like syntax for building a query. The key difference
between filter() and SelectQuery.where()
is that filter() supports traversing joins using
django’s “double-underscore” syntax:

>>> sq = Entry.filter(blog__title='Some Blog')

This method is chainable:

>>> base_q = User.filter(active=True)
>>> some_user = base_q.filter(username='charlie')

Note

this method is provided for compatibility with peewee 1.

	
execute()

	

	Return type:	QueryResultWrapper

Executes the query and returns a QueryResultWrapper for iterating over
the result set. The results are managed internally by the query and whenever
a clause is added that would possibly alter the result set, the query is
marked for re-execution.

	
__iter__()

	Executes the query:

>>> for user in User.select().where(User.active == True):
... print user.username

UpdateQuery

	
class UpdateQuery

	Used for updating rows in the database.

	
__init__(model, **kwargs)

	

	Parameters:	
	model – Model class on which to perform update

	kwargs – mapping of field/value pairs containing columns and values to update

>>> uq = UpdateQuery(User, active=False).where(User.registration_expired==True)
>>> uq.execute() # run the query

>>> atomic_update = UpdateQuery(User, message_count=User.message_count + 1).where(User.id == 3)
>>> atomic_update.execute() # run the query

	
where(*args, **kwargs)

	Same as SelectQuery.where()

	
execute()

	

	Return type:	Number of rows updated

Performs the query

DeleteQuery

	
class DeleteQuery

	Deletes rows of the given model.

Note

It will not traverse foreign keys or ensure that constraints are obeyed, so use it with care.

	
__init__(model)

	creates a DeleteQuery instance for the given model:

>>> dq = DeleteQuery(User).where(User.active==False)

	
where(*args, **kwargs)

	Same as SelectQuery.where()

	
execute()

	

	Return type:	Number of rows deleted

Performs the query

InsertQuery

	
class InsertQuery

	Creates a new row for the given model.

	
__init__(model, **kwargs)

	creates an InsertQuery instance for the given model where kwargs is a
dictionary of field name to value:

>>> iq = InsertQuery(User, username='admin', password='test', active=True)
>>> iq.execute() # <--- insert new row

	
execute()

	

	Return type:	primary key of the new row

Performs the query

RawQuery

	
class RawQuery

	Allows execution of an arbitrary query and returns instances
of the model via a QueryResultsWrapper.

	
__init__(model, query, *params)

	creates a RawQuery instance for the given model which, when executed,
will run the given query with the given parameters and return model instances:

>>> rq = RawQuery(User, 'SELECT * FROM users WHERE username = ?', 'admin')
>>> for obj in rq.execute():
... print obj
<User: admin>

	
execute()

	

	Return type:	a QueryResultWrapper for iterating over the result set. The results are instances of the given model.

Performs the query

 Copyright charles leifer.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	peewee 2.0.0 documentation

Databases

Below the Model level, peewee uses an abstraction for representing the database. The
Database is responsible for establishing and closing connections, making queries,
and gathering information from the database. The Database encapsulates functionality
specific to a given db driver. For example difference in column types across database engines,
or support for certain features like sequences. The database is responsible for smoothing out
the quirks of each backend driver to provide a consistent interface.

The Database also uses a subclass of QueryCompiler to generate
valid SQL. The QueryCompiler maps the internal data structures used by peewee to
SQL statements.

For a high-level overview of working with transactions, check out the transactions cookbook.

For notes on deferring instantiation of database, for example if loading configuration
at run-time, see the notes on deferring initialization.

Note

The internals of the Database and QueryCompiler will be
of interest to anyone interested in adding support for another database driver.

Writing a database driver

Peewee currently supports Sqlite, MySQL and Postgresql. These databases are very
popular and run the gamut from fast, embeddable databases to heavyweight servers
suitable for large-scale deployments. That being said, there are a ton of cool
databases out there and adding support for your database-of-choice should be really
easy, provided the driver supports the DB-API 2.0 spec [http://www.python.org/dev/peps/pep-0249/].

The db-api 2.0 spec should be familiar to you if you’ve used the standard library
sqlite3 driver, psycopg2 or the like. Peewee currently relies on a handful of parts:

	Connection.commit

	Connection.execute

	Connection.rollback

	Cursor.description

	Cursor.fetchone

These methods are generally wrapped up in higher-level abstractions and exposed
by the Database, so even if your driver doesn’t
do these exactly you can still get a lot of mileage out of peewee. An example
is the apsw sqlite driver [http://code.google.com/p/apsw/] in the “playhouse”
module.

Starting out

The first thing is to provide a subclass of Database that will open
a connection.

from peewee import Database
import foodb # our fictional driver

class FooDatabase(Database):
 def _connect(self, database, **kwargs):
 return foodb.connect(database, **kwargs)

Essential methods to override

The Database provides a higher-level API and is responsible for executing queries,
creating tables and indexes, and introspecting the database to get lists of tables. The above
implementation is the absolute minimum needed, though some features will not work – for best
results you will want to additionally add a method for extracting a list of tables
and indexes for a table from the database. We’ll pretend that FooDB is a lot like
MySQL and has special “SHOW” statements:

class FooDatabase(Database):
 def _connect(self, database, **kwargs):
 return foodb.connect(database, **kwargs)

 def get_tables(self):
 res = self.execute('SHOW TABLES;')
 return [r[0] for r in res.fetchall()]

 def get_indexes_for_table(self, table):
 res = self.execute('SHOW INDEXES IN %s;' % self.quote_name(table))
 rows = sorted([(r[2], r[1] == 0) for r in res.fetchall()])
 return rows

Other things the database handles that are not covered here include:

	last insert id and number of rows modified

	specifying characters used for string interpolation and quoting identifiers,
for instance, sqlite uses ”?” for interpolation and MySQL uses a backtick for quoting

	mapping operations such as “LIKE/ILIKE” to their database equivalent

Refer to the documentation below or the source code [https://github.com/coleifer/peewee/blob/master/peewee.py]. for details.

Note

If your driver conforms to the db-api 2.0 spec, there shouldn’t be
much work needed to get up and running.

Using our new database

Our new database can be used just like any of the other database subclasses:

from peewee import *
from foodb_ext import FooDatabase

db = FooDatabase('my_database', user='foo', password='secret')

class BaseModel(Model):
 class Meta:
 database = db

class Blog(BaseModel):
 title = CharField()
 contents = TextField()
 pub_date = DateTimeField()

Database and its subclasses

	
class Database

	A high-level api for working with the supported database engines. Database
provides a wrapper around some of the functions performed by the Adapter,
in addition providing support for:

	execution of SQL queries

	creating and dropping tables and indexes

	
compiler_class = QueryCompiler

	A class suitable for compiling queries

	
expr_overrides = {}

	A mapping of expression codes to string operators

	
field_overrides = {}

	A mapping of field types to database column types, e.g. {'primary_key': 'SERIAL'}

	
for_update = False

	Whether the given backend supports selecting rows for update

	
interpolation = '%s'

	The string used by the driver to interpolate query parameters

	
op_overrides = {}

	A mapping of operation codes to string operations, e.g. {OP_LIKE: 'LIKE BINARY'}

	
quote_char = '"'

	The string used by the driver to quote names

	
reserved_tables = []

	Table names that are reserved by the backend – if encountered in the
application a warning will be issued.

	
sequences = False

	Whether the given backend supports sequences

	
subquery_delete_same_table = True

	Whether the given backend supports deleting rows using a subquery
that selects from the same table

	
__init__(database[, threadlocals=False[, autocommit=True[, **connect_kwargs]]])

	

	Parameters:	
	database – the name of the database (or filename if using sqlite)

	threadlocals – whether to store connections in a threadlocal

	autocommit – automatically commit every query executed by calling execute()

	connect_kwargs – any arbitrary parameters to pass to the database driver when connecting

Note

if your database name is not known when the class is declared, you can pass
None in as the database name which will mark the database as “deferred”
and any attempt to connect while in this state will raise an exception. To
initialize your database, call the Database.init() method with
the database name

	
init(database[, **connect_kwargs])

	If the database was instantiated with database=None, the database is said to be in
a ‘deferred’ state (see notes) – if this is the case,
you can initialize it at any time by calling the init method.

	Parameters:	
	database – the name of the database (or filename if using sqlite)

	connect_kwargs – any arbitrary parameters to pass to the database driver when connecting

	
connect()

	Establishes a connection to the database

Note

If you initialized with threadlocals=True, then this will store
the connection inside a threadlocal, ensuring that connections are not
shared across threads.

	
close()

	Closes the connection to the database (if one is open)

Note

If you initialized with threadlocals=True, only a connection local
to the calling thread will be closed.

	
get_conn()

	

	Return type:	a connection to the database, creates one if does not exist

	
get_cursor()

	

	Return type:	a cursor for executing queries

	
get_compiler()

	

	Return type:	an instance of QueryCompiler

	
set_autocommit(autocommit)

	

	Parameters:	autocommit – a boolean value indicating whether to turn on/off autocommit
for the current connection

	
get_autocommit()

	

	Return type:	a boolean value indicating whether autocommit is on for the current connection

	
execute(query)

	

	Param:	a query instance, such as a SelectQuery

	Return type:	the resulting cursor

	
execute_sql(sql[, params=None[, require_commit=True]])

	

	Parameters:	
	sql – a string sql query

	params – a list or tuple of parameters to interpolate

Note

You can configure whether queries will automatically commit by using
the set_autocommit() and Database.get_autocommit()
methods.

	
commit()

	Call commit() on the active connection, committing the current transaction

	
rollback()

	Call rollback() on the active connection, rolling back the current transaction

	
commit_on_success(func)

	Decorator that wraps the given function in a single transaction, which,
upon success will be committed. If an error is raised inside the function,
the transaction will be rolled back and the error will be re-raised.

	Parameters:	func – function to decorate

@database.commit_on_success
def transfer_money(from_acct, to_acct, amt):
 from_acct.charge(amt)
 to_acct.pay(amt)
 return amt

	
transaction()

	Return a context manager that executes statements in a transaction. If an
error is raised inside the context manager, the transaction will be rolled
back, otherwise statements are committed when exiting.

delete a blog instance and all its associated entries, but
do so within a transaction
with database.transaction():
 blog.delete_instance(recursive=True)

	
last_insert_id(cursor, model)

	

	Parameters:	
	cursor – the database cursor used to perform the insert query

	model – the model class that was just created

	Return type:	the primary key of the most recently inserted instance

	
rows_affected(cursor)

	

	Return type:	number of rows affected by the last query

	
create_table(model_class)

	

	Parameters:	model_class – Model class to create table for

	
create_index(model_class, fields[, unique=False])

	

	Parameters:	
	model_class – Model table on which to create index

	fields – field(s) to create index on (either field instances or field names)

	unique – whether the index should enforce uniqueness

	
create_foreign_key(model_class, field)

	

	Parameters:	
	model_class – Model table on which to create foreign key index / constraint

	field – Field object

	
drop_table(model_class[, fail_silently=False])

	

	Parameters:	
	model_class – Model table to drop

	fail_silently – if True, query will add a IF EXISTS clause

Note

Cascading drop tables are not supported at this time, so if a constraint
exists that prevents a table being dropped, you will need to handle
that in application logic.

	
create_sequence(sequence_name)

	

	Parameters:	sequence_name – name of sequence to create

Note

only works with database engines that support sequences

	
drop_sequence(sequence_name)

	

	Parameters:	sequence_name – name of sequence to drop

Note

only works with database engines that support sequences

	
get_indexes_for_table(table)

	

	Parameters:	table – the name of table to introspect

	Return type:	a list of (index_name, is_unique) tuples

Warning

Not implemented – implementations exist in subclasses

	
get_tables()

	

	Return type:	a list of table names in the database

Warning

Not implemented – implementations exist in subclasses

	
sequence_exists(sequence_name)

	

	Rtype boolean:	

	
class SqliteDatabase(Database)

	Database subclass that communicates to the “sqlite3” driver

	
class MySQLDatabase(Database)

	Database subclass that communicates to the “MySQLdb” driver

	
class PostgresqlDatabase(Database)

	Database subclass that communicates to the “psycopg2” driver

 Copyright charles leifer.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 previous |

 	peewee 2.0.0 documentation

Playhouse, a collection of addons

Peewee comes with numerous extras which I didn’t really feel like including in
the main source module, but which might be interesting to implementers or fun
to mess around with.

apsw, an advanced sqlite driver

The apsw_ext module contains a database class suitable for use with the
apsw [http://code.google.com/p/apsw/] sqlite driver. With apsw, it is possible
to use some of the more advanced features of sqlite. It also offers better performance
than pysqlite and finer-grained control over query execution. For more information
on the differences between apsw and pysqlite, check the apsw docs [http://apidoc.apsw.googlecode.com/hg/pysqlite.html].

Example usage

from apsw_ext import *

db = APSWDatabase(':memory:')

class BaseModel(Model):
 class Meta:
 database = db

class SomeModel(BaseModel):
 col1 = CharField()
 col2 = DateTimeField()
 # etc, etc

apsw_ext API notes

	
class APSWDatabase(database, **connect_kwargs)

	

	Parameters:	
	database (string) – filename of sqlite database

	connect_kwargs – keyword arguments passed to apsw when opening a connection

	
transaction([lock_type='deferred'])

	Functions just like the Database.transaction() context manager,
but accepts an additional parameter specifying the type of lock to use.

	Parameters:	lock_type (string) – type of lock to use when opening a new transaction

	
register_module(mod_name, mod_inst)

	Provides a way of globally registering a module. For more information,
see the documentation on virtual tables [http://apidoc.apsw.googlecode.com/hg/vtable.html].

	Parameters:	
	mod_name (string) – name to use for module

	mod_inst (object) – an object implementing the Virtual Table [http://apidoc.apsw.googlecode.com/hg/vtable.html?highlight=virtual%20table#apsw.VTTable] interface

	
unregister_module(mod_name)

	Unregister a module.

	Parameters:	mod_name (string) – name to use for module

Postgresql HStore

The postgresql extensions module provides a number of “postgres-only” functions, currently:

	hstore support

Warning

In order to start using the features described below, you will need to use the
extension PostgresqlExtDatabase class instead of PostgresqlDatabase.

The code below will assume you are using the following database and base model:

from playhouse.postgres_ext import *

ext_db = PostgresqlExtDatabase('peewee_test', user='postgres')

class BaseExtModel(Model):
 class Meta:
 database = ext_db

hstore support

Postgresql hstore [http://www.postgresql.org/docs/current/static/hstore.html] is
an embedded key/value store. With hstore, you can store arbitrary key/value pairs
in your database alongside structured relational data. hstore is great for storing
JSON.

Currently the postgres_ext module supports the following operations:

	store and retrieve arbitrary dictionaries

	filter by key(s) or partial dictionary

	update/add one or more keys to an existing dictionary

	delete one or more keys from an existing dictionary

	select keys, values, or zip keys and values

	retrieve a slice of keys/values

	test for the existence of a key

	test that a key has a non-NULL value

using hstore

To start with, you will need to import the custom database class and the hstore
functions from playhouse.postgres_ext (see above code snippet). Then, it is
as simple as adding a HStoreField to your model:

class House(BaseExtModel):
 address = CharField()
 features = HStoreField()

You can now store arbitrary key/value pairs on House instances:

>>> h = House.create(address='123 Main St', features={'garage': '2 cars', 'bath': '2 bath'})
>>> h_from_db = House.get(House.id == h.id)
>>> h_from_db.features
{'bath': '2 bath', 'garage': '2 cars'}

You can filter by keys or partial dictionary:

>>> f = House.features
>>> House.select().where(f.contains('garage')) # <-- all houses w/garage key
>>> House.select().where(f.contains(['garage', 'bath'])) # <-- all houses w/garage & bath
>>> House.select().where(f.contains({'garage': '2 cars'})) # <-- houses w/2-car garage

Suppose you want to do an atomic update to the house:

>>> f = House.features
>>> query = House.update(features=f.update({'bath': '2.5 bath', 'sqft': '1100'}))
>>> query.where(House.id == h.id).execute()
1
>>> h = House.get(House.id == h.id)
>>> h.features
{'bath': '2.5 bath', 'garage': '2 cars', 'sqft': '1100'}

Or, alternatively an atomic delete:

>>> query = House.update(features=f.delete('bath'))
>>> query.where(House.id == h.id).execute()
1
>>> h = House.get(House.id == h.id)
>>> h.features
{'garage': '2 cars', 'sqft': '1100'}

Multiple keys can be deleted at the same time:

>>> query = House.update(features=f.delete('garage', 'sqft'))

You can select just keys, just values, or zip the two:

>>> f = House.features
>>> for h in House.select(House.address, f.keys().alias('keys')):
... print h.address, h.keys

123 Main St [u'bath', u'garage']

>>> for h in House.select(House.address, f.values().alias('vals')):
... print h.address, h.vals

123 Main St [u'2 bath', u'2 cars']

>>> for h in House.select(House.address, f.items().alias('mtx')):
... print h.address, h.mtx

123 Main St [[u'bath', u'2 bath'], [u'garage', u'2 cars']]

You can retrieve a slice of data, for example, all the garage data:

>>> f = House.features
>>> for h in House.select(House.address, f.slice('garage').alias('garage_data')):
... print h.address, h.garage_data

123 Main St {'garage': '2 cars'}

You can check for the existence of a key and filter rows accordingly:

>>> for h in House.select(House.address, f.exists('garage').alias('has_garage')):
... print h.address, h.has_garage

123 Main St True

>>> for h in House.select().where(f.exists('garage')):
... print h.address, h.features['garage'] # <-- just houses w/garage data

123 Main St 2 cars

pwiz, a model generator

pwiz is a little script that ships with peewee and is capable of introspecting
an existing database and generating model code suitable for interacting with the
underlying data. If you have a database already, pwiz can give you a nice boost
by generating skeleton code with correct column affinities and foreign keys.

If you install peewee using setup.py install, pwiz will be installed as a “script”
and you can just run:

pwiz.py -e postgresql -u postgres my_postgres_db > my_models.py

This will print a bunch of models to standard output. So you can do this:

pwiz.py -e postgresql my_postgres_db > mymodels.py
python # <-- fire up an interactive shell

>>> from mymodels import Blog, Entry, Tag, Whatever
>>> print [blog.name for blog in Blog.select()]

	Option
	Meaning
	Example

	-h
	show help
	

	-e
	database backend
	-e mysql

	-H
	host to connect to
	-H remote.db.server

	-p
	port to connect on
	-p 9001

	-u
	database user
	-u postgres

	-P
	database password
	-P secret

	-s
	postgres schema
	-s public

The following are valid parameters for the engine:

	sqlite

	mysql

	postgresql

Signal support

Models with hooks for signals (a-la django) are provided in playhouse.signals.
To use the signals, you will need all of your project’s models to be a subclass
of playhouse.signals.Model, which overrides the necessary methods to provide
support for the various signals.

from playhouse.signals import Model, connect, post_save

class MyModel(Model):
 data = IntegerField()

@connect(post_save, sender=MyModel)
def on_save_handler(model_class, instance, created):
 put_data_in_cache(instance.data)

The following signals are provided:

	pre_save

	Called immediately before an object is saved to the database. Provides an
additional keyword argument created, indicating whether the model is being
saved for the first time or updated.

	post_save

	Called immediately after an object is saved to the database. Provides an
additional keyword argument created, indicating whether the model is being
saved for the first time or updated.

	pre_delete

	Called immediately before an object is deleted from the database when Model.delete_instance()
is used.

	post_delete

	Called immediately after an object is deleted from the database when Model.delete_instance()
is used.

	pre_init

	Called when a model class is first instantiated

	post_init

	Called after a model class has been instantiated and the fields have been populated,
for example when being selected as part of a database query.

Connecting handlers

Whenever a signal is dispatched, it will call any handlers that have been registered.
This allows totally separate code to respond to events like model save and delete.

The Signal class provides a connect() method, which takes
a callback function and two optional parameters for “sender” and “name”. If specified,
the “sender” parameter should be a single model class and allows your callback to only
receive signals from that one model class. The “name” parameter is used as a convenient alias
in the event you wish to unregister your signal handler.

Example usage:

from playhouse.signals import *

def post_save_handler(sender, instance, created):
 print '%s was just saved' % instance

our handler will only be called when we save instances of SomeModel
post_save.connect(post_save_handler, sender=SomeModel)

All signal handlers accept as their first two arguments sender and instance,
where sender is the model class and instance is the actual model being acted
upon.

If you’d like, you can also use a decorator to connect signal handlers. This is
functionally equivalent to the above example:

@connect(post_save, sender=SomeModel)
def post_save_handler(sender, instance, created):
 print '%s was just saved' % instance

Signal API

	
class Signal

	Stores a list of receivers (callbacks) and calls them when the “send” method is invoked.

	
connect(receiver[, sender=None[, name=None]])

	Add the receiver to the internal list of receivers, which will be called
whenever the signal is sent.

	Parameters:	
	receiver (callable) – a callable that takes at least two parameters,
a “sender”, which is the Model subclass that triggered the signal, and
an “instance”, which is the actual model instance.

	sender (Model) – if specified, only instances of this model class will
trigger the receiver callback.

	name (string) – a short alias

from playhouse.signals import post_save
from project.handlers import cache_buster

post_save.connect(cache_buster, name='project.cache_buster')

	
disconnect([receiver=None[, name=None]])

	Disconnect the given receiver (or the receiver with the given name alias)
so that it no longer is called. Either the receiver or the name must be
provided.

	Parameters:	
	receiver (callable) – the callback to disconnect

	name (string) – a short alias

post_save.disconnect(name='project.cache_buster')

	
send(instance, *args, **kwargs)

	Iterates over the receivers and will call them in the order in which
they were connected. If the receiver specified a sender, it will only
be called if the instance is an instance of the sender.

	Parameters:	instance – a model instance

	
connect(signal[, sender=None[, name=None]])

	Function decorator that is an alias for a signal’s connect method:

from playhouse.signals import connect, post_save

@connect(post_save, name='project.cache_buster')
def cache_bust_handler(sender, instance, *args, **kwargs):
 # bust the cache for this instance
 cache.delete(cache_key_for(instance))

 Copyright charles leifer.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	peewee 2.0.0 documentation

Index

 _
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | J
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 | W

_

 	

 	__init__() (Database method)

 	

 	(DeleteQuery method)

 	(Field method)

 	(ForeignKeyField method)

 	(InsertQuery method)

 	(RawQuery method)

 	(SelectQuery method)

 	(UpdateQuery method)

 	

 	__iter__() (SelectQuery method)

A

 	

 	aggregate() (SelectQuery method)

 	annotate() (SelectQuery method)

 	

 	APSWDatabase (built-in class)

B

 	

 	BooleanField (built-in class)

C

 	

 	CharField (built-in class)

 	class_prepared() (Field method)

 	close() (Database method)

 	coerce() (Field method)

 	commit() (Database method)

 	commit_on_success() (Database method)

 	connect() (built-in function)

 	

 	(Database method)

 	(Signal method)

 	

 	count() (SelectQuery method)

 	create() (Model class method)

 	create_foreign_key() (Database method)

 	create_index() (Database method)

 	create_sequence() (Database method)

 	create_table() (Database method)

 	

 	(Model class method)

D

 	

 	Database (built-in class)

 	DateField (built-in class)

 	DateTimeField (built-in class)

 	db_value() (Field method)

 	DecimalField (built-in class)

 	delete() (Model class method)

 	

 	delete_instance() (Model method)

 	DeleteQuery (built-in class)

 	disconnect() (Signal method)

 	distinct() (SelectQuery method)

 	drop_sequence() (Database method)

 	drop_table() (Database method)

 	

 	(Model class method)

E

 	

 	execute() (Database method)

 	

 	(DeleteQuery method)

 	(InsertQuery method)

 	(RawQuery method)

 	(SelectQuery method)

 	(UpdateQuery method)

 	execute_sql() (Database method)

 	

 	exists() (SelectQuery method)

F

 	

 	Field (built-in class)

 	field_attributes() (Field method)

 	filter() (Model class method)

 	

 	(SelectQuery method)

 	FloatField (built-in class)

 	

 	fn (built-in class)

 	for_update() (SelectQuery method)

 	ForeignKeyField (built-in class)

G

 	

 	get() (Model class method)

 	

 	(SelectQuery method)

 	get_autocommit() (Database method)

 	get_compiler() (Database method)

 	get_conn() (Database method)

 	get_cursor() (Database method)

 	

 	get_indexes_for_table() (Database method)

 	get_or_create() (Model class method)

 	get_tables() (Database method)

 	group_by() (SelectQuery method)

H

 	

 	having() (SelectQuery method)

I

 	

 	init() (Database method)

 	insert() (Model class method)

 	

 	InsertQuery (built-in class)

 	IntegerField (built-in class)

J

 	

 	join() (SelectQuery method)

L

 	

 	last_insert_id() (Database method)

 	

 	limit() (SelectQuery method)

M

 	

 	Model (built-in class)

 	

 	MySQLDatabase (built-in class)

N

 	

 	naive() (SelectQuery method)

O

 	

 	offset() (SelectQuery method)

 	

 	order_by() (SelectQuery method)

P

 	

 	paginate() (SelectQuery method)

 	PostgresqlDatabase (built-in class)

 	

 	PrimaryKeyField (built-in class)

 	python_value() (Field method)

R

 	

 	raw() (Model class method)

 	RawQuery (built-in class)

 	register_module() (APSWDatabase method)

 	

 	rollback() (Database method)

 	rows_affected() (Database method)

S

 	

 	save() (Model method)

 	select() (Model class method)

 	SelectQuery (built-in class)

 	send() (Signal method)

 	sequence_exists() (Database method)

 	

 	set_autocommit() (Database method)

 	Signal (built-in class)

 	SqliteDatabase (built-in class)

 	switch() (SelectQuery method)

T

 	

 	table_exists() (Model class method)

 	TextField (built-in class)

 	

 	TimeField (built-in class)

 	transaction() (APSWDatabase method)

 	

 	(Database method)

U

 	

 	unregister_module() (APSWDatabase method)

 	update() (Model class method)

 	

 	UpdateQuery (built-in class)

W

 	

 	where() (DeleteQuery method)

 	

 	(SelectQuery method)

 	(UpdateQuery method)

 Copyright charles leifer.
 Created using Sphinx 1.2.2.

 _static/minus.png

_static/peewee-white.png
?\ 102y

v O/
“3.0)"
Carii)

,;fﬂEEI.I]EE
/

_static/plus.png

_static/up.png

search.html

 Navigation

 		
 index

 		peewee 2.0.0 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright charles leifer.
 Created using Sphinx 1.2.2.

_static/ajax-loader.gif

_images/schema.jpg
Message

User

Fuser: Tk
+content
+pub_date

Relationship

usernane
+password ~from_user: Tk
+email +to_user: fk

+join_date

_static/file.png

_images/tweepee.jpg
Tweepee

‘public timeline create log out

Public Timeline

€

1 wish | were bald.

_static/up-pressed.png

_static/comment.png

_static/down.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

